Yusuf Alibrahim , Muhieldean Ibrahim , Devindra Gurdayal , Muhammad Munshi
{"title":"AI speechbots and 3D segmentations in virtual reality improve radiology on-call training in resource-limited settings","authors":"Yusuf Alibrahim , Muhieldean Ibrahim , Devindra Gurdayal , Muhammad Munshi","doi":"10.1016/j.ibmed.2025.100245","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Evaluate the use of large-language model (LLM) speechbot tools and deep learning-assisted generation of 3D reconstructions when integrated in a virtual reality (VR) setting to teach radiology on-call topics to radiology residents.</div></div><div><h3>Methods</h3><div>Three first year radiology residents in Guyana were enrolled in an 8-week radiology course that focused on preparation for on-call duties. The course, delivered via VR headsets with custom software integrating LLM-powered speechbots trained on imaging reports and 3D reconstructions segmented with the help of a deep learning model. Each session focused on a specific radiology area, employing a didactic and case-based learning approach, enhanced with 3D reconstructions and an LLM-powered speechbot. Post-session, residents reassessed their knowledge and provided feedback on their VR and LLM-powered speechbot experiences.</div></div><div><h3>Results/discussion</h3><div>Residents found that the 3D reconstructions segmented semi-automatically by deep learning algorithms and AI-driven self-learning via speechbot was highly valuable. The 3D reconstructions, especially in the interventional radiology session, were helpful and the benefit is augmented by VR where navigating the models is seamless and perception of depth is pronounced. Residents also found conversing with the AI-speechbot seamless and was valuable in their post session self-learning. The major drawback of VR was motion sickness, which was mild and improved over time.</div></div><div><h3>Conclusion</h3><div>AI-assisted VR radiology education could be used to develop new and accessible ways of teaching a variety of radiology topics in a seamless and cost-effective way. This could be especially useful in supporting radiology education remotely in regions which lack local radiology expertise.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100245"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Evaluate the use of large-language model (LLM) speechbot tools and deep learning-assisted generation of 3D reconstructions when integrated in a virtual reality (VR) setting to teach radiology on-call topics to radiology residents.
Methods
Three first year radiology residents in Guyana were enrolled in an 8-week radiology course that focused on preparation for on-call duties. The course, delivered via VR headsets with custom software integrating LLM-powered speechbots trained on imaging reports and 3D reconstructions segmented with the help of a deep learning model. Each session focused on a specific radiology area, employing a didactic and case-based learning approach, enhanced with 3D reconstructions and an LLM-powered speechbot. Post-session, residents reassessed their knowledge and provided feedback on their VR and LLM-powered speechbot experiences.
Results/discussion
Residents found that the 3D reconstructions segmented semi-automatically by deep learning algorithms and AI-driven self-learning via speechbot was highly valuable. The 3D reconstructions, especially in the interventional radiology session, were helpful and the benefit is augmented by VR where navigating the models is seamless and perception of depth is pronounced. Residents also found conversing with the AI-speechbot seamless and was valuable in their post session self-learning. The major drawback of VR was motion sickness, which was mild and improved over time.
Conclusion
AI-assisted VR radiology education could be used to develop new and accessible ways of teaching a variety of radiology topics in a seamless and cost-effective way. This could be especially useful in supporting radiology education remotely in regions which lack local radiology expertise.