用于肺癌分类的临床就绪CNN框架:提高计算效率的医疗部署系统优化

G. Inbasakaran, J. Anitha Ruth
{"title":"用于肺癌分类的临床就绪CNN框架:提高计算效率的医疗部署系统优化","authors":"G. Inbasakaran,&nbsp;J. Anitha Ruth","doi":"10.1016/j.ibmed.2025.100292","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study develops a computationally efficient Convolutional Neural Network (CNN) for lung cancer classification in Computed Tomography (CT) images, addressing the critical need for accurate diagnostic tools deployable in resource-constrained clinical settings.</div></div><div><h3>Methods</h3><div>Using the IQ-OTH/NCCD dataset (1190 CT images: normal, benign, and malignant classes from 110 patients), we implemented systematic architecture optimization with strategic data augmentation to address class imbalance and limited dataset challenges. Patient-level data splitting prevented leakage, ensuring valid performance metrics. The model was evaluated using 5-fold cross-validation and compared against established architectures using McNemar's test for statistical significance.</div></div><div><h3>Results</h3><div>The optimized CNN achieved 94 % classification accuracy with only 4.2 million parameters and 18 ms inference time. Performance significantly exceeded AlexNet (85 %), VGG-16 (88 %), ResNet-50 (90 %), InceptionV3 (87 %), and DenseNet (86 %) with p &lt; 0.05. Malignant case detection showed excellent clinical metrics (precision: 0.96, recall: 0.95, F1-score: 0.95), critical for minimizing false negatives. Ablation studies revealed data augmentation contributed 6.6 % accuracy improvement, with rotation and translation proving most effective. The model operates 4.3 × faster than ResNet-50 while using 6 × fewer parameters, enabling deployment on standard clinical workstations with 4–8 GB GPU memory.</div></div><div><h3>Conclusions</h3><div>Carefully optimized CNN architectures can achieve superior diagnostic performance while meeting computational constraints of real-world medical settings. Our approach demonstrates that systematic optimization strategies effectively balance accuracy with clinical deployment feasibility, providing a practical framework for implementing AI-assisted lung cancer detection in resource-limited healthcare environments. The model's high sensitivity for malignant cases positions it as a valuable clinical decision support tool.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100292"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical-ready CNN framework for lung cancer classification: Systematic optimization for healthcare deployment with enhanced computational efficiency\",\"authors\":\"G. Inbasakaran,&nbsp;J. Anitha Ruth\",\"doi\":\"10.1016/j.ibmed.2025.100292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This study develops a computationally efficient Convolutional Neural Network (CNN) for lung cancer classification in Computed Tomography (CT) images, addressing the critical need for accurate diagnostic tools deployable in resource-constrained clinical settings.</div></div><div><h3>Methods</h3><div>Using the IQ-OTH/NCCD dataset (1190 CT images: normal, benign, and malignant classes from 110 patients), we implemented systematic architecture optimization with strategic data augmentation to address class imbalance and limited dataset challenges. Patient-level data splitting prevented leakage, ensuring valid performance metrics. The model was evaluated using 5-fold cross-validation and compared against established architectures using McNemar's test for statistical significance.</div></div><div><h3>Results</h3><div>The optimized CNN achieved 94 % classification accuracy with only 4.2 million parameters and 18 ms inference time. Performance significantly exceeded AlexNet (85 %), VGG-16 (88 %), ResNet-50 (90 %), InceptionV3 (87 %), and DenseNet (86 %) with p &lt; 0.05. Malignant case detection showed excellent clinical metrics (precision: 0.96, recall: 0.95, F1-score: 0.95), critical for minimizing false negatives. Ablation studies revealed data augmentation contributed 6.6 % accuracy improvement, with rotation and translation proving most effective. The model operates 4.3 × faster than ResNet-50 while using 6 × fewer parameters, enabling deployment on standard clinical workstations with 4–8 GB GPU memory.</div></div><div><h3>Conclusions</h3><div>Carefully optimized CNN architectures can achieve superior diagnostic performance while meeting computational constraints of real-world medical settings. Our approach demonstrates that systematic optimization strategies effectively balance accuracy with clinical deployment feasibility, providing a practical framework for implementing AI-assisted lung cancer detection in resource-limited healthcare environments. The model's high sensitivity for malignant cases positions it as a valuable clinical decision support tool.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"12 \",\"pages\":\"Article 100292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究开发了一种计算效率高的卷积神经网络(CNN),用于计算机断层扫描(CT)图像中的肺癌分类,解决了在资源有限的临床环境中部署准确诊断工具的关键需求。方法利用iqoth /NCCD数据集(来自110例患者的1190张CT图像:正常、良性和恶性分类),通过战略性数据增强实现系统架构优化,以解决分类不平衡和数据集有限的挑战。患者级数据分割防止了泄漏,确保了有效的性能指标。该模型使用5倍交叉验证进行评估,并使用McNemar的统计显著性检验与已建立的架构进行比较。结果优化后的CNN只需要420万个参数和18 ms的推理时间,分类准确率达到94%。性能显著高于AlexNet(85%)、VGG-16(88%)、ResNet-50(90%)、InceptionV3(87%)和DenseNet (86%), p < 0.05。恶性病例的检出表现出优异的临床指标(准确率:0.96,召回率:0.95,f1评分:0.95),这对于减少假阴性至关重要。消融研究显示,数据增强提高了6.6%的准确性,旋转和平移被证明是最有效的。该模型的运行速度比ResNet-50快4.3倍,同时使用的参数减少了6倍,可在具有4-8 GB GPU内存的标准临床工作站上部署。结论经过精心优化的CNN架构在满足现实医疗环境计算约束的情况下,能够取得优异的诊断性能。我们的方法表明,系统优化策略有效地平衡了准确性和临床部署的可行性,为在资源有限的医疗环境中实施人工智能辅助肺癌检测提供了一个实用的框架。该模型对恶性病例的高敏感性使其成为一种有价值的临床决策支持工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical-ready CNN framework for lung cancer classification: Systematic optimization for healthcare deployment with enhanced computational efficiency

Purpose

This study develops a computationally efficient Convolutional Neural Network (CNN) for lung cancer classification in Computed Tomography (CT) images, addressing the critical need for accurate diagnostic tools deployable in resource-constrained clinical settings.

Methods

Using the IQ-OTH/NCCD dataset (1190 CT images: normal, benign, and malignant classes from 110 patients), we implemented systematic architecture optimization with strategic data augmentation to address class imbalance and limited dataset challenges. Patient-level data splitting prevented leakage, ensuring valid performance metrics. The model was evaluated using 5-fold cross-validation and compared against established architectures using McNemar's test for statistical significance.

Results

The optimized CNN achieved 94 % classification accuracy with only 4.2 million parameters and 18 ms inference time. Performance significantly exceeded AlexNet (85 %), VGG-16 (88 %), ResNet-50 (90 %), InceptionV3 (87 %), and DenseNet (86 %) with p < 0.05. Malignant case detection showed excellent clinical metrics (precision: 0.96, recall: 0.95, F1-score: 0.95), critical for minimizing false negatives. Ablation studies revealed data augmentation contributed 6.6 % accuracy improvement, with rotation and translation proving most effective. The model operates 4.3 × faster than ResNet-50 while using 6 × fewer parameters, enabling deployment on standard clinical workstations with 4–8 GB GPU memory.

Conclusions

Carefully optimized CNN architectures can achieve superior diagnostic performance while meeting computational constraints of real-world medical settings. Our approach demonstrates that systematic optimization strategies effectively balance accuracy with clinical deployment feasibility, providing a practical framework for implementing AI-assisted lung cancer detection in resource-limited healthcare environments. The model's high sensitivity for malignant cases positions it as a valuable clinical decision support tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信