{"title":"Clinical-ready CNN framework for lung cancer classification: Systematic optimization for healthcare deployment with enhanced computational efficiency","authors":"G. Inbasakaran, J. Anitha Ruth","doi":"10.1016/j.ibmed.2025.100292","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study develops a computationally efficient Convolutional Neural Network (CNN) for lung cancer classification in Computed Tomography (CT) images, addressing the critical need for accurate diagnostic tools deployable in resource-constrained clinical settings.</div></div><div><h3>Methods</h3><div>Using the IQ-OTH/NCCD dataset (1190 CT images: normal, benign, and malignant classes from 110 patients), we implemented systematic architecture optimization with strategic data augmentation to address class imbalance and limited dataset challenges. Patient-level data splitting prevented leakage, ensuring valid performance metrics. The model was evaluated using 5-fold cross-validation and compared against established architectures using McNemar's test for statistical significance.</div></div><div><h3>Results</h3><div>The optimized CNN achieved 94 % classification accuracy with only 4.2 million parameters and 18 ms inference time. Performance significantly exceeded AlexNet (85 %), VGG-16 (88 %), ResNet-50 (90 %), InceptionV3 (87 %), and DenseNet (86 %) with p < 0.05. Malignant case detection showed excellent clinical metrics (precision: 0.96, recall: 0.95, F1-score: 0.95), critical for minimizing false negatives. Ablation studies revealed data augmentation contributed 6.6 % accuracy improvement, with rotation and translation proving most effective. The model operates 4.3 × faster than ResNet-50 while using 6 × fewer parameters, enabling deployment on standard clinical workstations with 4–8 GB GPU memory.</div></div><div><h3>Conclusions</h3><div>Carefully optimized CNN architectures can achieve superior diagnostic performance while meeting computational constraints of real-world medical settings. Our approach demonstrates that systematic optimization strategies effectively balance accuracy with clinical deployment feasibility, providing a practical framework for implementing AI-assisted lung cancer detection in resource-limited healthcare environments. The model's high sensitivity for malignant cases positions it as a valuable clinical decision support tool.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100292"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study develops a computationally efficient Convolutional Neural Network (CNN) for lung cancer classification in Computed Tomography (CT) images, addressing the critical need for accurate diagnostic tools deployable in resource-constrained clinical settings.
Methods
Using the IQ-OTH/NCCD dataset (1190 CT images: normal, benign, and malignant classes from 110 patients), we implemented systematic architecture optimization with strategic data augmentation to address class imbalance and limited dataset challenges. Patient-level data splitting prevented leakage, ensuring valid performance metrics. The model was evaluated using 5-fold cross-validation and compared against established architectures using McNemar's test for statistical significance.
Results
The optimized CNN achieved 94 % classification accuracy with only 4.2 million parameters and 18 ms inference time. Performance significantly exceeded AlexNet (85 %), VGG-16 (88 %), ResNet-50 (90 %), InceptionV3 (87 %), and DenseNet (86 %) with p < 0.05. Malignant case detection showed excellent clinical metrics (precision: 0.96, recall: 0.95, F1-score: 0.95), critical for minimizing false negatives. Ablation studies revealed data augmentation contributed 6.6 % accuracy improvement, with rotation and translation proving most effective. The model operates 4.3 × faster than ResNet-50 while using 6 × fewer parameters, enabling deployment on standard clinical workstations with 4–8 GB GPU memory.
Conclusions
Carefully optimized CNN architectures can achieve superior diagnostic performance while meeting computational constraints of real-world medical settings. Our approach demonstrates that systematic optimization strategies effectively balance accuracy with clinical deployment feasibility, providing a practical framework for implementing AI-assisted lung cancer detection in resource-limited healthcare environments. The model's high sensitivity for malignant cases positions it as a valuable clinical decision support tool.