A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM

Sajid Naveed , Mujtaba Husnain
{"title":"A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM","authors":"Sajid Naveed ,&nbsp;Mujtaba Husnain","doi":"10.1016/j.ibmed.2025.100206","DOIUrl":null,"url":null,"abstract":"<div><div>Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100206"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.
基于反应预测的药物推荐系统:利用LightGBM整合药物SMILES的基因表达和K-mer碎片化
医学专家和医生检查胶质母细胞瘤(GBM)癌症患者的基因表达异常,以确定药物反应。本研究的主要目的是建立一个基于机器学习(ML)的模型,以改善癌症药物治疗的结果,从而节省医生的时间和精力。我们的目标是开发一种药物反应推荐系统,利用癌细胞系的基因表达数据,以半最大抑制浓度(IC50)来预测抗癌药物的反应。来自GBM癌症患者的遗传数据被用作系统的输入,以预测和推荐多种抗癌药物对特定癌症样本的反应。在这项研究中,我们利用K-mer分子碎片以一种新颖的方式处理药物SMILES,这使我们能够建立一个提供药物反应的胜任模型。我们使用光梯度增强机(Light Gradient Boosting Machine, LightGBM)回归算法和癌症药物敏感性基因组学(Genomics of Drug Sensitivity of Cancer, GDSC)数据来构建这个推荐系统。结果表明,对GBM数据的预测IC50值均落在实际值的范围内。替莫唑胺和卡莫司汀两种药物的预测均方误差(MSE)分别为0.10和0.11,未见样品的预测均方误差为0.41。这些建议的反应然后由专家医生验证,他们确认对这些药物的反应非常接近实际反应。这些建议也有效地减缓这些肿瘤的生长,并通过监测药物效果来改善患者的生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信