成吉思汗鲨杂交特征选择与雪消融优化技术在多疾病预后中的应用

Ruqsar Zaitoon , Shaik Salma Asiya Begum , Sachi Nandan Mohanty , Deepa Jose
{"title":"成吉思汗鲨杂交特征选择与雪消融优化技术在多疾病预后中的应用","authors":"Ruqsar Zaitoon ,&nbsp;Shaik Salma Asiya Begum ,&nbsp;Sachi Nandan Mohanty ,&nbsp;Deepa Jose","doi":"10.1016/j.ibmed.2025.100249","DOIUrl":null,"url":null,"abstract":"<div><div>The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100249"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection using hybridized Genghis Khan Shark with snow ablation optimization technique for multi-disease prognosis\",\"authors\":\"Ruqsar Zaitoon ,&nbsp;Shaik Salma Asiya Begum ,&nbsp;Sachi Nandan Mohanty ,&nbsp;Deepa Jose\",\"doi\":\"10.1016/j.ibmed.2025.100249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗数据和特征维数的指数级增长为建立准确、高效的诊断模型提出了重大挑战。高维数据集通常包含冗余或不相关的特征,这些特征会降低分类性能并增加计算负担。因此,特征选择(FS)是医疗数据分析中提高模型准确性和可解释性的关键步骤。虽然许多最新的FS技术依赖于优化算法,但调整其参数和避免早期收敛仍然是主要挑战。本研究引入一种新的混合优化技术-杂交成吉思汗鲨鱼与雪消融优化(HyGKS-SAO) -来识别最具信息量的特征,用于多疾病分类。首先使用基于tanh的规范化方法对原始医疗数据集进行预处理。HyGKS-SAO算法选择最优特征,有效地平衡了搜索和开发。最后,利用多核支持向量机(SVM)对所选特征进行疾病分类。拟议的框架在六个公开可用的医疗数据集上进行了评估,包括乳腺癌、糖尿病、心脏病、中风、肺癌和慢性肾病。实验结果证明了该方法的有效性,准确率为98%,MCC为97.99%,PPV为96.31%,g均值为97.35%,Kappa系数为98.03%,计算时间仅为50 s,优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection using hybridized Genghis Khan Shark with snow ablation optimization technique for multi-disease prognosis
The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信