Ruqsar Zaitoon , Shaik Salma Asiya Begum , Sachi Nandan Mohanty , Deepa Jose
{"title":"成吉思汗鲨杂交特征选择与雪消融优化技术在多疾病预后中的应用","authors":"Ruqsar Zaitoon , Shaik Salma Asiya Begum , Sachi Nandan Mohanty , Deepa Jose","doi":"10.1016/j.ibmed.2025.100249","DOIUrl":null,"url":null,"abstract":"<div><div>The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100249"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection using hybridized Genghis Khan Shark with snow ablation optimization technique for multi-disease prognosis\",\"authors\":\"Ruqsar Zaitoon , Shaik Salma Asiya Begum , Sachi Nandan Mohanty , Deepa Jose\",\"doi\":\"10.1016/j.ibmed.2025.100249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature selection using hybridized Genghis Khan Shark with snow ablation optimization technique for multi-disease prognosis
The exponential growth in medical data and feature dimensionality presents significant challenges in building accurate and efficient diagnostic models. High-dimensional datasets often contain redundant or irrelevant features that degrade classification performance and increase computational burden. Feature selection (FS) is therefore a critical step in medical data analysis to enhance model accuracy and interpretability. While many recent FS techniques rely on optimization algorithms, tuning their parameters and avoiding early convergence remain major challenges. This study introduces a novel hybrid optimization technique—Hybridized Genghis Khan Shark with Snow Ablation Optimization (HyGKS-SAO)—to identify the most informative features for multi-disease classification. The raw medical datasets are first pre-processed using a Tanh-based normalization method. The HyGKS-SAO algorithm then selects optimal features, balancing exploration and exploitation effectively. Finally, a multi-kernel support vector machine (SVM) is employed to classify diseases based on the selected features. The proposed framework is evaluated on six publicly available medical datasets, including breast cancer, diabetes, heart disease, stroke, lung cancer, and chronic kidney disease. Experimental results demonstrate the effectiveness of the proposed method, achieving 98 % accuracy, 97.99 % MCC, 96.31 % PPV, 97.35 % G-mean, 98.03 % Kappa Coefficient, and a low computation time of 50 s, outperforming several state-of-the-art approaches.