{"title":"Leveraging Conv-XGBoost algorithm for perceived mental stress detection using Photoplethysmography","authors":"Geethu S. Kumar, B. Ankayarkanni","doi":"10.1016/j.ibmed.2025.100209","DOIUrl":null,"url":null,"abstract":"<div><div>Stress detection is crucial for monitoring mental health and preventing stress-related disorders. Real-time stress detection shows promise with photoplethysmography (PPG), a non-invasive optical technology that analyzes blood volume changes in the microvascular bed of tissue. This study introduces a novel hybrid model, Conv-XGBoost, which combines Convolutional Neural Networks (CNN) and eXtreme Gradient Boosting (XGBoost) to improve the accuracy and robustness of stress detection from PPG signals. The Conv-XGBoost model utilizes the feature extraction capabilities of CNNs to process PPG signals, converting them into spectrograms that capture the time–frequency characteristics of data. The XGBoost component is essential for handling the complex, high-dimensional feature sets provided by the CNN, enhancing prediction capabilities through gradient boosting. This customized approach addresses the limitations of traditional machine learning algorithms in dealing with hand-crafted features. The Pulse Rate Variability-based Photoplethysmography dataset was chosen for training and validation. The outcomes of the experiments revealed that the proposed Conv-XGBoost model outperformed more conventional machine learning techniques with a training accuracy of 98.87%, validation accuracy of 93.28% and an F1-score of 97.25%. Additionally, the model demonstrated superior resilience to noise and variability in PPG signals, common in real-world scenarios. This study underscores how hybrid models can improve stress detection and sets the stage for future research integrating physiological signals with advanced deep learning techniques.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100209"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stress detection is crucial for monitoring mental health and preventing stress-related disorders. Real-time stress detection shows promise with photoplethysmography (PPG), a non-invasive optical technology that analyzes blood volume changes in the microvascular bed of tissue. This study introduces a novel hybrid model, Conv-XGBoost, which combines Convolutional Neural Networks (CNN) and eXtreme Gradient Boosting (XGBoost) to improve the accuracy and robustness of stress detection from PPG signals. The Conv-XGBoost model utilizes the feature extraction capabilities of CNNs to process PPG signals, converting them into spectrograms that capture the time–frequency characteristics of data. The XGBoost component is essential for handling the complex, high-dimensional feature sets provided by the CNN, enhancing prediction capabilities through gradient boosting. This customized approach addresses the limitations of traditional machine learning algorithms in dealing with hand-crafted features. The Pulse Rate Variability-based Photoplethysmography dataset was chosen for training and validation. The outcomes of the experiments revealed that the proposed Conv-XGBoost model outperformed more conventional machine learning techniques with a training accuracy of 98.87%, validation accuracy of 93.28% and an F1-score of 97.25%. Additionally, the model demonstrated superior resilience to noise and variability in PPG signals, common in real-world scenarios. This study underscores how hybrid models can improve stress detection and sets the stage for future research integrating physiological signals with advanced deep learning techniques.