{"title":"IEEE Transactions on Medical Robotics and Bionics Society Information","authors":"","doi":"10.1109/TMRB.2025.3593798","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3593798","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"C3-C3"},"PeriodicalIF":3.8,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Medical Robotics and Bionics Information for Authors","authors":"","doi":"10.1109/TMRB.2025.3593800","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3593800","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"C4-C4"},"PeriodicalIF":3.8,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Medical Robotics and Bionics Publication Information","authors":"","doi":"10.1109/TMRB.2025.3593796","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3593796","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"C2-C2"},"PeriodicalIF":3.8,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11133577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating In-Bore Navigation Frames With Continuum Robot for MRI-Guided Steerable Laser Ablation of Brain Tumor","authors":"Qingpeng Ding;Yongjun Yan;Xin Tong;Kim Yan;Wu Yuan;George Kwok Chu Wong;Shing Shin Cheng","doi":"10.1109/TMRB.2025.3590494","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590494","url":null,"abstract":"Current MR-conditional neurosurgical robotic systems face challenges in bulky navigation setup and limited distal dexterity. To address these, we introduce navigation frames consisting of a compact spherical stereotactic frame and a fixture frame, and a system for MRI-guided laser interstitial thermal therapy (LITT) of brain tumors integrating the navigation frames and a steerable robotic laser manipulator. The novel navigation frames enable in-bore stereotactic targeting through multiple burr holes with a single registration procedure and 3-degree-of-freedom pivoting about each burr hole, while simultaneously support the actuator-equipped manipulator across a large workspace. Kinematic modeling and design optimization were performed for the navigation components to achieve Pareto balance between large laser coverage and sufficient stiffness for the manipulator support. The unique setting enables in the clinical workflow intuitive navigation frames adjustment for stereotactic targeting and iterative laser tip steering to adapt to targeting error and various tumor geometries. Experiments demonstrate high tip positioning accuracy (RMSE 1.45 mm), minimal MR imaging interference (<inline-formula> <tex-math>$lt 1.71%~Delta $ </tex-math></inline-formula>SNR, <0.71 mm distortion), and precise MRI-guided tip steering (RMSE 2.1 mm). Compared to existing MRI-guided neurosurgical systems, our system offers practical and accurate navigation, distal robot dexterity, and minimal MR image disruption, potentially improving clinical LITT outcomes and facilitating autonomous MRI-guided ablation strategies.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1099-1110"},"PeriodicalIF":3.8,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11112788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sérgio G. Pereira;Pedro Morais;Estevão Lima;João L. Vilaça
{"title":"Innovative Medical Navigation Interfaces in Laparoscopic Control: A Systematic Review","authors":"Sérgio G. Pereira;Pedro Morais;Estevão Lima;João L. Vilaça","doi":"10.1109/TMRB.2025.3590483","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590483","url":null,"abstract":"Minimally invasive surgeries (MIS) replaced traditional open surgeries to reduce scarring and blood loss. This procedure involves making small abdominal incisions for the placement of instruments and a laparoscope that provides visual access for the surgeon. Initially, an assistant held the laparoscope throughout the procedure, however, with technological advances, teleoperated systems have emerged where surgeons controlled it with bodily impulses. More recently, automated systems have been introduced where the camera is repositioned using image processing and artificial intelligence. This study systematically reviews the advancements in laparoscope camera control over the past decade. It involved searching PubMed and Web of Science until 1st September 2023, using keywords such as “MIS control”, “MIS holders” and “robotics in MIS”, yielding 905 publications. After reviewing abstracts, 71 studies were selected for full reading and classified into manual, teleoperated, automated, or hybrid control systems. This results found diverse innovative approaches to laparoscope camera control, however, few automatic methods have yet been validated in clinics. In the last five years, automatic and hybrid systems have increased significantly, approaching the number of teleoperated solutions. In the future, it is expected that these systems will improve precision and reduce the workload of medical teams.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"881-897"},"PeriodicalIF":3.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Echo-Robot: Semi-Autonomous Cardiac Ultrasound Image Acquisition Using AI and Robotics","authors":"Eliott Laurent;Raska Soemantoro;Kathryn Jenner;Attila Kardos;Gilbert Tang;Yifan Zhao","doi":"10.1109/TMRB.2025.3590471","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590471","url":null,"abstract":"Echocardiography is a critical tool for diagnosing cardiovascular diseases, offering detailed insights into heart functions. However, its accessibility is currently limited by a shortage of trained sonographers, specific skill requirements, and the physical strain imposed on professionals during repetitive procedures. This article introduces a new robotic system designed to automate the acquisition of transthoracic echocardiography (TTE) images. The system autonomously adjusts the position and orientation of the ultrasound transducer based on analysing real-time ultrasound images, without relying on tomographic data or depth sensors. Initially, the transducer is manually placed on the subject’s skin, and the system uses a deep learning approach to grade the quality of ultrasound images captured at each position. The robot then adjusts its position by spiralling outwards from the starting point, moving to the location with the highest image quality score. Next, the system fine-tunes the transducer’s orientation in 5-degree increments along all three axes of rotation, informed by another deep learning module to identify the field of view. The robotic system was tested using a cardiac simulator, achieving approximately 80% accuracy in acquiring the A4Ch view when the probe was initially positioned randomly in a 6 by 6 cm area beneath the left nipple. The impact of this work would be rapid diagnostics in the Emergency Departments to reduce the length of stay in hospitals, a reduction of hospital admissions related to heart disease by accessing local healthcare communities, acceleration of clearing the post-Covid backlog, and improved quality of life and longevity of patients.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1307-1316"},"PeriodicalIF":3.8,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young
{"title":"An Anthropometry-Based Personalization of Powered Knee Prosthesis for Metabolic Efficiency","authors":"Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young","doi":"10.1109/TMRB.2025.3590488","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590488","url":null,"abstract":"Traditional tuning methods of assistance parameters rely on the experience of human experts but often fail to achieve optimal performance. Human-in-the-loop optimization improves parameter selection but requires extensive in-lab testing. In this study, we rigorously tested two control parameters, early stance knee flexion angle (5° to 12°) and swing initiation timing (55% to 65% of the gait cycle), with ten individuals with transfemoral amputation using a commercially available robotic prosthetic knee, Össur Power Knee, and a passive foot, Pro-Flex LP. We measured energy expenditure, joint work, and user preferences during treadmill walking. Results showed a 15.6% reduction in metabolic rate with stance flexion decreasing from 12° to 5° (p<0.05). User preferences favored lower stance flexion and personalized swing initiation. Personalized-best settings reduced the metabolic rate by 4.1% (stance flexion) and 9.8% (swing initiation) compared to the best-on-average settings (p<0.05). These reductions were also significant when compared to the device default and clinically tuned settings (p<0.05). We proposed an offline learning approach using anthropometric, gait, and prosthesis-related data to estimate optimal settings, yielding a 7.1% reduction in metabolic rate (p<0.05). Our results suggest that this approach achieves comparable energy efficiency without lengthy experiments, enabling automatic parameter tuning with initial measurements.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1263-1274"},"PeriodicalIF":3.8,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical-Optimal-Control-Compliant Muscle Model for Electrically Evoked Contractions","authors":"Tiago Coelho-Magalhães;Christine Azevedo-Coste;François Bailly","doi":"10.1109/TMRB.2025.3590453","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590453","url":null,"abstract":"In this paper, an existing physiological muscle model that predicts muscular force in response to electrical stimulation is adapted to be compatible with gradient-based optimization, in particular with numerical optimal control/estimation problems. The objective is to integrate biomechanical models with those that correlate muscle force generation with electrical pulses from a physiological perspective, with the aim of achieving optimal stimulation patterns in activities assisted by functional electrical stimulation. To this end, the activation dynamics of the original model, initially constrained to a stimulation train of predefined and constant length, is reformulated to account for stimulation sequences that dynamically change over time. This is typically necessary to simulate complex motions, which would otherwise be impossible to achieve with the earliest formulation. To identify the model parameters, experimental torque data of 3 participants with spinal cord injury performing electrically evoked isometric quadriceps contractions at different knee angles are used. We then employ an optimal control framework to demonstrate the model’s ability to predict knee torques and the possibility of achieving optimized stimulation patterns in simulation for controlling muscle force and knee extension. Our results reveal that the identified model allows accurate prediction of knee torque and optimization of stimulation patterns while satisfying the system’s dynamics at the skeletal and physiological muscle levels. This proof of concept is a first step towards physiological muscle model-based control of functional electrical stimulation to achieve movements that best exploit an individual’s physiological and biomechanical characteristics.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1297-1306"},"PeriodicalIF":3.8,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Heidari;M. Motaharifar;E. A. Khameneh;S. F. Mohammadi;M. Tavakoli;H. D. Taghirad
{"title":"A Survey of Versatile AI/Robotic Architectures for Ophthalmic Surgery Training","authors":"R. Heidari;M. Motaharifar;E. A. Khameneh;S. F. Mohammadi;M. Tavakoli;H. D. Taghirad","doi":"10.1109/TMRB.2025.3590489","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3590489","url":null,"abstract":"Ocular surgery demands exceptional precision due to the eye’s delicate anatomy, where errors, particularly by novice surgeons, can lead to severe complications. This underscores the critical need for advanced training and skill development methodologies. The integration of versatile AI/Robotic architectures into ophthalmic surgical training is revolutionizing how surgeons acquire and refine their skills. These specialized training tools provide a safe and realistic environment, crucial for deliberate practice, skill enhancement, and the delivery of personalized feedback. This paper offers a comprehensive review of such AI/Robotic architectures specifically designed for or adapted to ophthalmic surgery training. It examines these systems from multiple viewpoints: for ophthalmologists, it details how these technologies are reshaping training paradigms, improving skill acquisition, and enabling competency-based educational models. For control and robotic engineers, it provides an in-depth technical analysis of contemporary training systems, with a focus on their control architectures, simulation environments, haptic feedback mechanisms, and varying levels of autonomy within these educational platforms. Furthermore, by identifying emerging commercial training simulators and AI-driven educational tools, this review highlights new market opportunities in the domain of surgical education. Ultimately, this comprehensive overview identifies promising directions for future research and development, offering valuable guidance for advancing the field of AI and robotics in ophthalmic surgical training.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"898-909"},"PeriodicalIF":3.8,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pretraining Using Comparable Human Activities of Daily Living Dataset in Robotic Surgical Task Learning","authors":"Yi Hu;Mahdi Tavakoli;Jun Jin","doi":"10.1109/TMRB.2025.3589768","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3589768","url":null,"abstract":"Training robots to acquire surgical skills poses significant challenges, primarily due to the limited availability of comprehensive datasets and safety constraints that restrict real-time trial-and-error learning. Although human Activities of Daily Living (ADL) tasks differ substantially from surgical tasks, they encompass fundamental motor skills that can serve as a foundation for robot learning. Notably, skilled surgeons often develop their advanced surgical abilities by building upon these basic motor skills acquired through daily activities. Inspired by this progressive learning trajectory, we propose a novel surgical skill training framework that enables robots to learn basic motor skills from the ADL dataset and quickly adapt to advanced surgical skills. Specifically, we propose a unified predictive representation space, constructed using probabilistic successor features, which capture the dynamic patterns of motion primitives common to both ADL and surgical tasks. To investigate the transferability of skills from human ADL tasks to robotic surgical tasks, we conducted a mathematical analysis to evaluate transferable policies and performed simulation experiments to assess transfer performance. Furthermore, we validated the practicality and effectiveness of our method through real-world experiments. Results show that our method significantly reduces the need for extensive surgical datasets, and enables efficient learning in robotic surgical tasks.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1111-1124"},"PeriodicalIF":3.8,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}