An Anthropometry-Based Personalization of Powered Knee Prosthesis for Metabolic Efficiency

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young
{"title":"An Anthropometry-Based Personalization of Powered Knee Prosthesis for Metabolic Efficiency","authors":"Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young","doi":"10.1109/TMRB.2025.3590488","DOIUrl":null,"url":null,"abstract":"Traditional tuning methods of assistance parameters rely on the experience of human experts but often fail to achieve optimal performance. Human-in-the-loop optimization improves parameter selection but requires extensive in-lab testing. In this study, we rigorously tested two control parameters, early stance knee flexion angle (5° to 12°) and swing initiation timing (55% to 65% of the gait cycle), with ten individuals with transfemoral amputation using a commercially available robotic prosthetic knee, Össur Power Knee, and a passive foot, Pro-Flex LP. We measured energy expenditure, joint work, and user preferences during treadmill walking. Results showed a 15.6% reduction in metabolic rate with stance flexion decreasing from 12° to 5° (p<0.05). User preferences favored lower stance flexion and personalized swing initiation. Personalized-best settings reduced the metabolic rate by 4.1% (stance flexion) and 9.8% (swing initiation) compared to the best-on-average settings (p<0.05). These reductions were also significant when compared to the device default and clinically tuned settings (p<0.05). We proposed an offline learning approach using anthropometric, gait, and prosthesis-related data to estimate optimal settings, yielding a 7.1% reduction in metabolic rate (p<0.05). Our results suggest that this approach achieves comparable energy efficiency without lengthy experiments, enabling automatic parameter tuning with initial measurements.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1263-1274"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11084996/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional tuning methods of assistance parameters rely on the experience of human experts but often fail to achieve optimal performance. Human-in-the-loop optimization improves parameter selection but requires extensive in-lab testing. In this study, we rigorously tested two control parameters, early stance knee flexion angle (5° to 12°) and swing initiation timing (55% to 65% of the gait cycle), with ten individuals with transfemoral amputation using a commercially available robotic prosthetic knee, Össur Power Knee, and a passive foot, Pro-Flex LP. We measured energy expenditure, joint work, and user preferences during treadmill walking. Results showed a 15.6% reduction in metabolic rate with stance flexion decreasing from 12° to 5° (p<0.05). User preferences favored lower stance flexion and personalized swing initiation. Personalized-best settings reduced the metabolic rate by 4.1% (stance flexion) and 9.8% (swing initiation) compared to the best-on-average settings (p<0.05). These reductions were also significant when compared to the device default and clinically tuned settings (p<0.05). We proposed an offline learning approach using anthropometric, gait, and prosthesis-related data to estimate optimal settings, yielding a 7.1% reduction in metabolic rate (p<0.05). Our results suggest that this approach achieves comparable energy efficiency without lengthy experiments, enabling automatic parameter tuning with initial measurements.
基于人体测量学的动力膝关节假体代谢效率个性化研究
传统的辅助参数调优方法依赖于人类专家的经验,但往往无法达到最优的性能。人在环优化改进了参数选择,但需要大量的实验室测试。在这项研究中,我们严格测试了两个控制参数,早期站立膝关节弯曲角度(5°至12°)和摆动起始时间(55%至65%的步态周期),10例经股截肢患者使用市售机器人假膝Össur Power knee和被动足Pro-Flex LP。我们测量了在跑步机上行走时的能量消耗、关节工作和用户偏好。结果显示,当体位屈曲从12°减少到5°时,代谢率降低了15.6% (p<0.05)。用户偏好较低的姿态弯曲和个性化的挥拍开始。与平均最佳设置相比,个性化最佳设置可使代谢率降低4.1%(姿态弯曲)和9.8%(摇摆开始)(p<0.05)。与设备默认设置和临床调整设置相比,这些降低也很显著(p<0.05)。我们提出了一种离线学习方法,使用人体测量学、步态和假体相关数据来估计最佳设置,代谢率降低7.1% (p<0.05)。我们的研究结果表明,这种方法无需冗长的实验即可实现相当的能源效率,并且可以通过初始测量自动调整参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信