Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young
{"title":"An Anthropometry-Based Personalization of Powered Knee Prosthesis for Metabolic Efficiency","authors":"Sixu Zhou;Hanjun Kim;Jairo Y. Maldonado-Contreras;Atli Örn Sverrisson;David Langlois;Kinsey R. Herrin;Aaron J. Young","doi":"10.1109/TMRB.2025.3590488","DOIUrl":null,"url":null,"abstract":"Traditional tuning methods of assistance parameters rely on the experience of human experts but often fail to achieve optimal performance. Human-in-the-loop optimization improves parameter selection but requires extensive in-lab testing. In this study, we rigorously tested two control parameters, early stance knee flexion angle (5° to 12°) and swing initiation timing (55% to 65% of the gait cycle), with ten individuals with transfemoral amputation using a commercially available robotic prosthetic knee, Össur Power Knee, and a passive foot, Pro-Flex LP. We measured energy expenditure, joint work, and user preferences during treadmill walking. Results showed a 15.6% reduction in metabolic rate with stance flexion decreasing from 12° to 5° (p<0.05). User preferences favored lower stance flexion and personalized swing initiation. Personalized-best settings reduced the metabolic rate by 4.1% (stance flexion) and 9.8% (swing initiation) compared to the best-on-average settings (p<0.05). These reductions were also significant when compared to the device default and clinically tuned settings (p<0.05). We proposed an offline learning approach using anthropometric, gait, and prosthesis-related data to estimate optimal settings, yielding a 7.1% reduction in metabolic rate (p<0.05). Our results suggest that this approach achieves comparable energy efficiency without lengthy experiments, enabling automatic parameter tuning with initial measurements.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1263-1274"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11084996/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional tuning methods of assistance parameters rely on the experience of human experts but often fail to achieve optimal performance. Human-in-the-loop optimization improves parameter selection but requires extensive in-lab testing. In this study, we rigorously tested two control parameters, early stance knee flexion angle (5° to 12°) and swing initiation timing (55% to 65% of the gait cycle), with ten individuals with transfemoral amputation using a commercially available robotic prosthetic knee, Össur Power Knee, and a passive foot, Pro-Flex LP. We measured energy expenditure, joint work, and user preferences during treadmill walking. Results showed a 15.6% reduction in metabolic rate with stance flexion decreasing from 12° to 5° (p<0.05). User preferences favored lower stance flexion and personalized swing initiation. Personalized-best settings reduced the metabolic rate by 4.1% (stance flexion) and 9.8% (swing initiation) compared to the best-on-average settings (p<0.05). These reductions were also significant when compared to the device default and clinically tuned settings (p<0.05). We proposed an offline learning approach using anthropometric, gait, and prosthesis-related data to estimate optimal settings, yielding a 7.1% reduction in metabolic rate (p<0.05). Our results suggest that this approach achieves comparable energy efficiency without lengthy experiments, enabling automatic parameter tuning with initial measurements.