电诱发收缩的数字-最优控制-顺应肌肉模型

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Tiago Coelho-Magalhães;Christine Azevedo-Coste;François Bailly
{"title":"电诱发收缩的数字-最优控制-顺应肌肉模型","authors":"Tiago Coelho-Magalhães;Christine Azevedo-Coste;François Bailly","doi":"10.1109/TMRB.2025.3590453","DOIUrl":null,"url":null,"abstract":"In this paper, an existing physiological muscle model that predicts muscular force in response to electrical stimulation is adapted to be compatible with gradient-based optimization, in particular with numerical optimal control/estimation problems. The objective is to integrate biomechanical models with those that correlate muscle force generation with electrical pulses from a physiological perspective, with the aim of achieving optimal stimulation patterns in activities assisted by functional electrical stimulation. To this end, the activation dynamics of the original model, initially constrained to a stimulation train of predefined and constant length, is reformulated to account for stimulation sequences that dynamically change over time. This is typically necessary to simulate complex motions, which would otherwise be impossible to achieve with the earliest formulation. To identify the model parameters, experimental torque data of 3 participants with spinal cord injury performing electrically evoked isometric quadriceps contractions at different knee angles are used. We then employ an optimal control framework to demonstrate the model’s ability to predict knee torques and the possibility of achieving optimized stimulation patterns in simulation for controlling muscle force and knee extension. Our results reveal that the identified model allows accurate prediction of knee torque and optimization of stimulation patterns while satisfying the system’s dynamics at the skeletal and physiological muscle levels. This proof of concept is a first step towards physiological muscle model-based control of functional electrical stimulation to achieve movements that best exploit an individual’s physiological and biomechanical characteristics.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1297-1306"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical-Optimal-Control-Compliant Muscle Model for Electrically Evoked Contractions\",\"authors\":\"Tiago Coelho-Magalhães;Christine Azevedo-Coste;François Bailly\",\"doi\":\"10.1109/TMRB.2025.3590453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an existing physiological muscle model that predicts muscular force in response to electrical stimulation is adapted to be compatible with gradient-based optimization, in particular with numerical optimal control/estimation problems. The objective is to integrate biomechanical models with those that correlate muscle force generation with electrical pulses from a physiological perspective, with the aim of achieving optimal stimulation patterns in activities assisted by functional electrical stimulation. To this end, the activation dynamics of the original model, initially constrained to a stimulation train of predefined and constant length, is reformulated to account for stimulation sequences that dynamically change over time. This is typically necessary to simulate complex motions, which would otherwise be impossible to achieve with the earliest formulation. To identify the model parameters, experimental torque data of 3 participants with spinal cord injury performing electrically evoked isometric quadriceps contractions at different knee angles are used. We then employ an optimal control framework to demonstrate the model’s ability to predict knee torques and the possibility of achieving optimized stimulation patterns in simulation for controlling muscle force and knee extension. Our results reveal that the identified model allows accurate prediction of knee torque and optimization of stimulation patterns while satisfying the system’s dynamics at the skeletal and physiological muscle levels. This proof of concept is a first step towards physiological muscle model-based control of functional electrical stimulation to achieve movements that best exploit an individual’s physiological and biomechanical characteristics.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 3\",\"pages\":\"1297-1306\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11084991/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11084991/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,现有的生理肌肉模型,预测肌肉力响应电刺激的适应性,以兼容基于梯度的优化,特别是数值最优控制/估计问题。目标是从生理学角度将生物力学模型与肌肉力量产生与电脉冲相关的模型相结合,目的是在功能电刺激辅助下实现最佳刺激模式。为此,原始模型的激活动力学最初被限制在预定义的恒定长度的刺激序列中,现在需要重新制定,以考虑随时间动态变化的刺激序列。这通常是模拟复杂运动所必需的,否则用最早的公式是不可能实现的。为了确定模型参数,我们使用了3名脊髓损伤参与者在不同膝关节角度下进行电诱发四头肌等距收缩的实验扭矩数据。然后,我们采用最优控制框架来证明该模型预测膝关节扭矩的能力,以及在控制肌肉力量和膝关节伸展的模拟中实现优化刺激模式的可能性。我们的研究结果表明,所确定的模型可以准确预测膝关节扭矩和优化刺激模式,同时满足骨骼和生理肌肉水平的系统动力学。这一概念证明是迈向基于生理肌肉模型的功能性电刺激控制的第一步,以实现最好地利用个人生理和生物力学特征的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical-Optimal-Control-Compliant Muscle Model for Electrically Evoked Contractions
In this paper, an existing physiological muscle model that predicts muscular force in response to electrical stimulation is adapted to be compatible with gradient-based optimization, in particular with numerical optimal control/estimation problems. The objective is to integrate biomechanical models with those that correlate muscle force generation with electrical pulses from a physiological perspective, with the aim of achieving optimal stimulation patterns in activities assisted by functional electrical stimulation. To this end, the activation dynamics of the original model, initially constrained to a stimulation train of predefined and constant length, is reformulated to account for stimulation sequences that dynamically change over time. This is typically necessary to simulate complex motions, which would otherwise be impossible to achieve with the earliest formulation. To identify the model parameters, experimental torque data of 3 participants with spinal cord injury performing electrically evoked isometric quadriceps contractions at different knee angles are used. We then employ an optimal control framework to demonstrate the model’s ability to predict knee torques and the possibility of achieving optimized stimulation patterns in simulation for controlling muscle force and knee extension. Our results reveal that the identified model allows accurate prediction of knee torque and optimization of stimulation patterns while satisfying the system’s dynamics at the skeletal and physiological muscle levels. This proof of concept is a first step towards physiological muscle model-based control of functional electrical stimulation to achieve movements that best exploit an individual’s physiological and biomechanical characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信