IEEE transactions on medical robotics and bionics最新文献

筛选
英文 中文
A Calibration Procedure for Robotic Ultrasound Systems 机器人超声系统的校准程序
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-04-01 DOI: 10.1109/TMRB.2025.3556549
João Oliveira;Rui Moura Coelho;Herculano Carvalho;Jorge Martins
{"title":"A Calibration Procedure for Robotic Ultrasound Systems","authors":"João Oliveira;Rui Moura Coelho;Herculano Carvalho;Jorge Martins","doi":"10.1109/TMRB.2025.3556549","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3556549","url":null,"abstract":"With the rise of collaborative robots, there has been a growing interest in integrating ultrasound imaging with robotic systems in medical applications. This integration allows the system to receive real-time visual information, enabling the robot to move based on relevant anatomical features. However, for the visual information to be used accurately, it is essential to calibrate the pose of the ultrasound image in the robot’s coordinate frame. This paper presents a calibration technique that eliminates the need for external trackers and minimizes sources of error. The proposed method involves scanning a straight wire phantom with an unknown arrangement to constrain the set of possible solutions. By optimizing the cost function associated with the wires’ straightness, we can estimate the pose of the B-scan in the robot flange coordinate frame precisely and reliably without significant limitations, e.g., complex scanning trajectories. The technique shows an average precision of 0.8 mm and an accuracy of 1.72 mm with a scaling factor of 0.2778 mm/pixel.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"793-801"},"PeriodicalIF":3.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human-Robot Cooperative Adaptive Reinforcement Constraint Control for a Lower Limb Rehabilitation Exoskeleton Based on User’s Movement Intention 基于用户运动意愿的下肢康复外骨骼人机协同自适应强化约束控制
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-26 DOI: 10.1109/TMRB.2025.3553221
Rafael Perez-San Lazaro;Rita Q. Fuentes-Aguilar;Isaac Chairez
{"title":"Human-Robot Cooperative Adaptive Reinforcement Constraint Control for a Lower Limb Rehabilitation Exoskeleton Based on User’s Movement Intention","authors":"Rafael Perez-San Lazaro;Rita Q. Fuentes-Aguilar;Isaac Chairez","doi":"10.1109/TMRB.2025.3553221","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3553221","url":null,"abstract":"Exoskeletons used for rehabilitation must operate together with the patient to adapt to the biomechanical-inspired movements of the regular human gait cycle rather than operate by following a predefined trajectory without considering the human-robot interaction effects. This work presents the assessment of a lower limb exoskeleton whose motion is performed according to a collaborative approach given the movements of the human user and the relative force concerning the exoskeleton structure. The Opensim™ software serves to define the force and position reference trajectories to follow during the gait cycle, which serves as a reference for the hybrid control. These forces and movements are compared to the results of a virtual model that considers the interaction between the user and the exoskeleton in two possible scenarios. The first scenario contemplates the implementation of a position controller to generate interaction-independent movement of the exoskeleton. The second scenario considers the force exerted by the exoskeleton on the patient to trigger a force-based controller after trespassing a predefined value. This leads to a hybrid control scheme, which considers the position restrictions in the closed-loop feedback control strategy. Using this approach, the exoskeleton can collaborate actively with the user and provide motion as required, responding to position-controlled motion if the user is not opposed to the exoskeleton motion. This novel strategy permits the evaluation of a hybrid position-force controller for wearing the active orthosis. Numeric simulations show the performance of the proposed system. These outcomes confirm the supposed advantages of the proposed controller.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"607-620"},"PeriodicalIF":3.4,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Robot Transparency in Human–Robot Prosthesis Interaction to Mitigate Terrain Misrecognition Error 增强人机交互中的机器人透明度以减少地形误识别误差
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-19 DOI: 10.1109/TMRB.2025.3552924
I-Chieh Lee;Ming Liu;He Huang
{"title":"Enhancing Robot Transparency in Human–Robot Prosthesis Interaction to Mitigate Terrain Misrecognition Error","authors":"I-Chieh Lee;Ming Liu;He Huang","doi":"10.1109/TMRB.2025.3552924","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3552924","url":null,"abstract":"Clear and effective communication between humans and robots is crucial when they work closely together. As wearable robots become more intelligent and automated, anticipatory control is limited for amputees because they lack prior knowledge of the timing and nature of changes in the robot’s motion, making human-machine collaboration more challenging. This study addresses the need for improved wearable robot transparency by enhancing a prosthetic controller to provide users with advanced notifications of locomotion mode changes. Five transfemoral amputees (TFA) wore our designed knee prosthesis and walked on a treadmill. We simulated a terrain misrecognition error by switching the locomotion mode from treadmill walking to stair ascent. Our study focused on three main questions: 1) What is the ideal timing that the TFAs need to mitigate for machine errors? 2) How do TFAs compensate for prosthetic knee errors? And 3) How does the robotic prosthetic leg respond to the TFAs’ corrective actions? We found that the enhanced transparency system helps TFAs anticipate changes and adjust their gait to compensate for the terrain misrecognition error. Specifically, providing notifications about 650 milliseconds before a locomotion mode change significantly reduced the effect of robot errors. Although the error compensation from TFAs resulted in a larger magnitude of error induced by the prosthetic knee, the TFAs were able to tolerate it and improve balance stability. According to questionnaires on user preferences, with notification of prosthetic knee motion, the TFAs could trust the device more even though the devices might have occasional errors. This study demonstrates that simple notifications of the robot’s movement intent enhance the predictability of prosthetic motion, facilitating anticipatory adjustments that improve safety and user trust.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"734-742"},"PeriodicalIF":3.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Ankle Exoskeleton Motor Location on Gait Biomechanics and User Perceptions: The Bowden Cable Dilemma 踝关节外骨骼运动定位对步态生物力学和用户感知的影响:鲍登电缆困境
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-19 DOI: 10.1109/TMRB.2025.3550661
Shanpu Fang;Riley J. Shepard;Collin D. Bowersock;Zachary F. Lerner
{"title":"Effects of Ankle Exoskeleton Motor Location on Gait Biomechanics and User Perceptions: The Bowden Cable Dilemma","authors":"Shanpu Fang;Riley J. Shepard;Collin D. Bowersock;Zachary F. Lerner","doi":"10.1109/TMRB.2025.3550661","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3550661","url":null,"abstract":"Motor-powered ankle exoskeletons have been shown to improve walking and rehabilitation outcomes in individuals with and without gait impairments (e.g., cerebral palsy (CP)). To date, ankle exoskeleton designs have either placed the motors on the shanks (direct or quasi-direct drive) or around the waist with Bowden cable transmissions. The former offers better transmission efficiency, while the latter reduces added mass biomechanical penalty. The biomechanical effects of motor placement may be magnified for individuals with CP due to weakened lower limb strength. To date, no study has compared how motor placement alters the biomechanical responses and user perceptions of individuals with or without gait impairment (e.g., CP). In this study involving 7 individuals with CP and 9 unimpaired individuals, we compared their metabolic cost of transport, lower limb muscle activities, and user perceptions when using ankle exoskeletons with either waist-mounted motors (and Bowden cables) or shank-mounted motors that were otherwise identical. Despite changes in lower leg muscle recruitment, results showed no statistical differences in the metabolic cost of transport. Shank-mounted motors were preferred by more participants in both cohorts (e.g., 6/7 in CP). These results help inform the ergonomics and mechanical designs of ankle exoskeletons and how they may be perceived.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"699-710"},"PeriodicalIF":3.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of a Compact and Foldable Master Device Based on Binocular Near-Infrared Optical Navigation Technology for Minimally Invasive Surgery Robots 基于双目近红外光学导航技术的小型可折叠微创手术机器人主装置设计与分析
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-19 DOI: 10.1109/TMRB.2025.3550659
Lizhi Pan;Xu Jiang;Zhikang Ma;Bo Guan;Bo Yi;Jianchang Zhao
{"title":"Design and Analysis of a Compact and Foldable Master Device Based on Binocular Near-Infrared Optical Navigation Technology for Minimally Invasive Surgery Robots","authors":"Lizhi Pan;Xu Jiang;Zhikang Ma;Bo Guan;Bo Yi;Jianchang Zhao","doi":"10.1109/TMRB.2025.3550659","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3550659","url":null,"abstract":"The traditional minimally invasive surgical (MIS) robots generally have bulk leader manipulators with relatively fixed working positions, which limits their further utilization in special scenarios, such as remote surgeries. This study proposes a compact and foldable leader device based on passive binocular near-infrared (NIR) optical navigation technology for MIS robots, which does not need mechanical arm linkage constraints and provides a larger range of position and orientation tracking, enabling the surgeons to perform continuous leader-follower manipulations more steadily. Moreover, the polyhedral and foldable structure of the optical leader device further reduces the spatial footprint of the MIS robot. A prototype of the optical leader devices was constructed with a weight of 186 g. Its performance was then evaluated through testing, and the maximum average absolute error in position and orientation tracking was 0.90 mm and 0.45°, respectively. Additionally, the prototype exhibits acceptable stability and a wide range of position and orientation tracking. The leader device features a compact, foldable structure with enhanced portability and excellent position and orientation tracking capabilities, facilitating precise surgical maneuvers of surgeons in scenarios of remote surgeries.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"514-527"},"PeriodicalIF":3.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic Path Re-Planning for US Reconstruction of the Spine 美国脊柱重建机器人路径重新规划
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-19 DOI: 10.1109/TMRB.2025.3550662
Kaat Van Assche;Ruixuan Li;Ayoob Davoodi;Matthias Tummers;Mouloud Ourak;Gianni Borghesan;Nicola Cavalcanti;Philipp Fürnstahl;Emmanuel Vander Poorten
{"title":"Robotic Path Re-Planning for US Reconstruction of the Spine","authors":"Kaat Van Assche;Ruixuan Li;Ayoob Davoodi;Matthias Tummers;Mouloud Ourak;Gianni Borghesan;Nicola Cavalcanti;Philipp Fürnstahl;Emmanuel Vander Poorten","doi":"10.1109/TMRB.2025.3550662","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3550662","url":null,"abstract":"Robotic ultrasound (US) scanning of the spine is becoming an increasingly viable radiation-free alternative to CT scans and fluoroscopy. However, due to the complex shape of the vertebra, three-dimensional (3D) US reconstructions generated from two-dimensional (2D) US scans often lack important anatomic information, such as the spinous process. This paper investigates scanning strategies that reorient the probe during US scanning to improve surface coverage of 3D US reconstructions. A two-scan procedure with a path re-planning algorithm is presented. The proposed algorithm uses information from a first exploratory scan to generate an improved imaging trajectory whereby the US probe is near-perpendicular to the targeted bone surface. The results show a 30.4%, 42.3%, and 75.0% improvement in surface coverage on a synthetic phantom, cadaver, and human volunteers, respectively, achieving up to 56% surface coverage on human volunteers. These results emphasise the value of exploiting information about the underlying anatomy to optimise the scanning trajectory. The increased surface coverage of the 3D US reconstructions will provide higher quality radiation-free visualisation, extending the role of US as a complementary imaging modality for safe and effective diagnosis and spine interventions.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"755-767"},"PeriodicalIF":3.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Prototyping of a Cable-Driven Parallel Robot for At-Home Upper Extremity Rehabilitation 家用上肢康复用缆索驱动并联机器人的设计与原型
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-19 DOI: 10.1109/TMRB.2025.3552975
Shane Forbrigger;Shammas Mohyaddin;Ashkan Rashvand;Andrew Jerabek;Matt Robertson;Vincent DePaul;Keyvan Hashtrudi-Zaad
{"title":"Design and Prototyping of a Cable-Driven Parallel Robot for At-Home Upper Extremity Rehabilitation","authors":"Shane Forbrigger;Shammas Mohyaddin;Ashkan Rashvand;Andrew Jerabek;Matt Robertson;Vincent DePaul;Keyvan Hashtrudi-Zaad","doi":"10.1109/TMRB.2025.3552975","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3552975","url":null,"abstract":"At-home stroke rehabilitation robots could improve access to rehabilitation therapies for stroke survivors. However, as the home is a challenging environment for design, it is essential that such designs are closely linked to stakeholder needs. This paper continues previous work by the authors linking stakeholder needs to the design of an at-home stroke rehabilitation robot for the upper limb. The proposed design is a constrained cable robot with a vertical workspace, capable of supporting and measuring the motion of a stroke survivor’s arm and hand during therapy activities, with a modular end effector design to simulate a variety of activities of daily living. The technical requirements of the design are described and linked to research on therapy activities, activities of daily living, and anthropometry. The kinematic and dynamic requirements for the design are validated in experiments. Potential improvements for the design include adding powered hand modules to assist users with hand impairments, adding a third rotational degree of freedom, and investigating parallel-spring motor designs that could reduce power consumption.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"743-754"},"PeriodicalIF":3.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Medical Robotics and Bionics Society Information 医学机器人与仿生学学会汇刊
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-14 DOI: 10.1109/TMRB.2025.3563286
{"title":"IEEE Transactions on Medical Robotics and Bionics Society Information","authors":"","doi":"10.1109/TMRB.2025.3563286","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3563286","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"C3-C3"},"PeriodicalIF":3.4,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE医学机器人与仿生学信息汇刊
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-14 DOI: 10.1109/TMRB.2025.3563288
{"title":"IEEE Transactions on Medical Robotics and Bionics Information for Authors","authors":"","doi":"10.1109/TMRB.2025.3563288","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3563288","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"C4-C4"},"PeriodicalIF":3.4,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE医学机器人与仿生学汇刊
IF 3.4
IEEE transactions on medical robotics and bionics Pub Date : 2025-03-14 DOI: 10.1109/TMRB.2025.3563284
{"title":"IEEE Transactions on Medical Robotics and Bionics Publication Information","authors":"","doi":"10.1109/TMRB.2025.3563284","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3563284","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"C2-C2"},"PeriodicalIF":3.4,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11004175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信