基于用户运动意愿的下肢康复外骨骼人机协同自适应强化约束控制

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Rafael Perez-San Lazaro;Rita Q. Fuentes-Aguilar;Isaac Chairez
{"title":"基于用户运动意愿的下肢康复外骨骼人机协同自适应强化约束控制","authors":"Rafael Perez-San Lazaro;Rita Q. Fuentes-Aguilar;Isaac Chairez","doi":"10.1109/TMRB.2025.3553221","DOIUrl":null,"url":null,"abstract":"Exoskeletons used for rehabilitation must operate together with the patient to adapt to the biomechanical-inspired movements of the regular human gait cycle rather than operate by following a predefined trajectory without considering the human-robot interaction effects. This work presents the assessment of a lower limb exoskeleton whose motion is performed according to a collaborative approach given the movements of the human user and the relative force concerning the exoskeleton structure. The Opensim™ software serves to define the force and position reference trajectories to follow during the gait cycle, which serves as a reference for the hybrid control. These forces and movements are compared to the results of a virtual model that considers the interaction between the user and the exoskeleton in two possible scenarios. The first scenario contemplates the implementation of a position controller to generate interaction-independent movement of the exoskeleton. The second scenario considers the force exerted by the exoskeleton on the patient to trigger a force-based controller after trespassing a predefined value. This leads to a hybrid control scheme, which considers the position restrictions in the closed-loop feedback control strategy. Using this approach, the exoskeleton can collaborate actively with the user and provide motion as required, responding to position-controlled motion if the user is not opposed to the exoskeleton motion. This novel strategy permits the evaluation of a hybrid position-force controller for wearing the active orthosis. Numeric simulations show the performance of the proposed system. These outcomes confirm the supposed advantages of the proposed controller.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"607-620"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Robot Cooperative Adaptive Reinforcement Constraint Control for a Lower Limb Rehabilitation Exoskeleton Based on User’s Movement Intention\",\"authors\":\"Rafael Perez-San Lazaro;Rita Q. Fuentes-Aguilar;Isaac Chairez\",\"doi\":\"10.1109/TMRB.2025.3553221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exoskeletons used for rehabilitation must operate together with the patient to adapt to the biomechanical-inspired movements of the regular human gait cycle rather than operate by following a predefined trajectory without considering the human-robot interaction effects. This work presents the assessment of a lower limb exoskeleton whose motion is performed according to a collaborative approach given the movements of the human user and the relative force concerning the exoskeleton structure. The Opensim™ software serves to define the force and position reference trajectories to follow during the gait cycle, which serves as a reference for the hybrid control. These forces and movements are compared to the results of a virtual model that considers the interaction between the user and the exoskeleton in two possible scenarios. The first scenario contemplates the implementation of a position controller to generate interaction-independent movement of the exoskeleton. The second scenario considers the force exerted by the exoskeleton on the patient to trigger a force-based controller after trespassing a predefined value. This leads to a hybrid control scheme, which considers the position restrictions in the closed-loop feedback control strategy. Using this approach, the exoskeleton can collaborate actively with the user and provide motion as required, responding to position-controlled motion if the user is not opposed to the exoskeleton motion. This novel strategy permits the evaluation of a hybrid position-force controller for wearing the active orthosis. Numeric simulations show the performance of the proposed system. These outcomes confirm the supposed advantages of the proposed controller.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 2\",\"pages\":\"607-620\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10939013/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10939013/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于康复的外骨骼必须与患者一起操作,以适应常规人类步态周期的生物力学启发运动,而不是按照预定义的轨迹操作,而不考虑人机交互效应。这项工作提出了下肢外骨骼的评估,其运动是根据一个协作的方法来执行的,给出了人类用户的运动和有关外骨骼结构的相对力。Opensim™软件用于定义在步态周期中要遵循的力和位置参考轨迹,这可以作为混合控制的参考。将这些力和运动与虚拟模型的结果进行比较,该模型考虑了用户和外骨骼在两种可能情况下的相互作用。第一个场景考虑了位置控制器的实现,以生成外骨骼的独立于交互的运动。第二种方案考虑外骨骼对患者施加的力,在超出预定义值后触发基于力的控制器。这导致了一种混合控制方案,该方案在闭环反馈控制策略中考虑了位置限制。使用这种方法,外骨骼可以主动与用户协作并根据需要提供运动,如果用户不反对外骨骼运动,则可以响应位置控制运动。这种新策略允许对佩戴主动矫形器的混合位置-力控制器进行评估。数值仿真验证了该系统的性能。这些结果证实了所提出的控制器的假定优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-Robot Cooperative Adaptive Reinforcement Constraint Control for a Lower Limb Rehabilitation Exoskeleton Based on User’s Movement Intention
Exoskeletons used for rehabilitation must operate together with the patient to adapt to the biomechanical-inspired movements of the regular human gait cycle rather than operate by following a predefined trajectory without considering the human-robot interaction effects. This work presents the assessment of a lower limb exoskeleton whose motion is performed according to a collaborative approach given the movements of the human user and the relative force concerning the exoskeleton structure. The Opensim™ software serves to define the force and position reference trajectories to follow during the gait cycle, which serves as a reference for the hybrid control. These forces and movements are compared to the results of a virtual model that considers the interaction between the user and the exoskeleton in two possible scenarios. The first scenario contemplates the implementation of a position controller to generate interaction-independent movement of the exoskeleton. The second scenario considers the force exerted by the exoskeleton on the patient to trigger a force-based controller after trespassing a predefined value. This leads to a hybrid control scheme, which considers the position restrictions in the closed-loop feedback control strategy. Using this approach, the exoskeleton can collaborate actively with the user and provide motion as required, responding to position-controlled motion if the user is not opposed to the exoskeleton motion. This novel strategy permits the evaluation of a hybrid position-force controller for wearing the active orthosis. Numeric simulations show the performance of the proposed system. These outcomes confirm the supposed advantages of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信