Design and Prototyping of a Cable-Driven Parallel Robot for At-Home Upper Extremity Rehabilitation

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Shane Forbrigger;Shammas Mohyaddin;Ashkan Rashvand;Andrew Jerabek;Matt Robertson;Vincent DePaul;Keyvan Hashtrudi-Zaad
{"title":"Design and Prototyping of a Cable-Driven Parallel Robot for At-Home Upper Extremity Rehabilitation","authors":"Shane Forbrigger;Shammas Mohyaddin;Ashkan Rashvand;Andrew Jerabek;Matt Robertson;Vincent DePaul;Keyvan Hashtrudi-Zaad","doi":"10.1109/TMRB.2025.3552975","DOIUrl":null,"url":null,"abstract":"At-home stroke rehabilitation robots could improve access to rehabilitation therapies for stroke survivors. However, as the home is a challenging environment for design, it is essential that such designs are closely linked to stakeholder needs. This paper continues previous work by the authors linking stakeholder needs to the design of an at-home stroke rehabilitation robot for the upper limb. The proposed design is a constrained cable robot with a vertical workspace, capable of supporting and measuring the motion of a stroke survivor’s arm and hand during therapy activities, with a modular end effector design to simulate a variety of activities of daily living. The technical requirements of the design are described and linked to research on therapy activities, activities of daily living, and anthropometry. The kinematic and dynamic requirements for the design are validated in experiments. Potential improvements for the design include adding powered hand modules to assist users with hand impairments, adding a third rotational degree of freedom, and investigating parallel-spring motor designs that could reduce power consumption.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"743-754"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10934075/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

At-home stroke rehabilitation robots could improve access to rehabilitation therapies for stroke survivors. However, as the home is a challenging environment for design, it is essential that such designs are closely linked to stakeholder needs. This paper continues previous work by the authors linking stakeholder needs to the design of an at-home stroke rehabilitation robot for the upper limb. The proposed design is a constrained cable robot with a vertical workspace, capable of supporting and measuring the motion of a stroke survivor’s arm and hand during therapy activities, with a modular end effector design to simulate a variety of activities of daily living. The technical requirements of the design are described and linked to research on therapy activities, activities of daily living, and anthropometry. The kinematic and dynamic requirements for the design are validated in experiments. Potential improvements for the design include adding powered hand modules to assist users with hand impairments, adding a third rotational degree of freedom, and investigating parallel-spring motor designs that could reduce power consumption.
家用上肢康复用缆索驱动并联机器人的设计与原型
家用中风康复机器人可以改善中风幸存者接受康复治疗的机会。然而,由于住宅是一个具有挑战性的设计环境,因此这些设计必须与利益相关者的需求密切相关。本文延续了作者先前的工作,将利益相关者的需求与家用上肢中风康复机器人的设计联系起来。提出的设计是一个具有垂直工作空间的受限电缆机器人,能够在治疗活动中支持和测量中风幸存者的手臂和手的运动,具有模块化的末端执行器设计,以模拟各种日常生活活动。对设计的技术要求进行了描述,并与治疗活动、日常生活活动和人体测量学的研究联系起来。实验验证了设计的运动学和动力学要求。该设计的潜在改进包括增加动力手部模块,以帮助手部受损的用户,增加第三个旋转自由度,并研究可以降低功耗的并联弹簧电机设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信