回声机器人:利用人工智能和机器人技术的半自主心脏超声图像采集

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Eliott Laurent;Raska Soemantoro;Kathryn Jenner;Attila Kardos;Gilbert Tang;Yifan Zhao
{"title":"回声机器人:利用人工智能和机器人技术的半自主心脏超声图像采集","authors":"Eliott Laurent;Raska Soemantoro;Kathryn Jenner;Attila Kardos;Gilbert Tang;Yifan Zhao","doi":"10.1109/TMRB.2025.3590471","DOIUrl":null,"url":null,"abstract":"Echocardiography is a critical tool for diagnosing cardiovascular diseases, offering detailed insights into heart functions. However, its accessibility is currently limited by a shortage of trained sonographers, specific skill requirements, and the physical strain imposed on professionals during repetitive procedures. This article introduces a new robotic system designed to automate the acquisition of transthoracic echocardiography (TTE) images. The system autonomously adjusts the position and orientation of the ultrasound transducer based on analysing real-time ultrasound images, without relying on tomographic data or depth sensors. Initially, the transducer is manually placed on the subject’s skin, and the system uses a deep learning approach to grade the quality of ultrasound images captured at each position. The robot then adjusts its position by spiralling outwards from the starting point, moving to the location with the highest image quality score. Next, the system fine-tunes the transducer’s orientation in 5-degree increments along all three axes of rotation, informed by another deep learning module to identify the field of view. The robotic system was tested using a cardiac simulator, achieving approximately 80% accuracy in acquiring the A4Ch view when the probe was initially positioned randomly in a 6 by 6 cm area beneath the left nipple. The impact of this work would be rapid diagnostics in the Emergency Departments to reduce the length of stay in hospitals, a reduction of hospital admissions related to heart disease by accessing local healthcare communities, acceleration of clearing the post-Covid backlog, and improved quality of life and longevity of patients.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1307-1316"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Echo-Robot: Semi-Autonomous Cardiac Ultrasound Image Acquisition Using AI and Robotics\",\"authors\":\"Eliott Laurent;Raska Soemantoro;Kathryn Jenner;Attila Kardos;Gilbert Tang;Yifan Zhao\",\"doi\":\"10.1109/TMRB.2025.3590471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echocardiography is a critical tool for diagnosing cardiovascular diseases, offering detailed insights into heart functions. However, its accessibility is currently limited by a shortage of trained sonographers, specific skill requirements, and the physical strain imposed on professionals during repetitive procedures. This article introduces a new robotic system designed to automate the acquisition of transthoracic echocardiography (TTE) images. The system autonomously adjusts the position and orientation of the ultrasound transducer based on analysing real-time ultrasound images, without relying on tomographic data or depth sensors. Initially, the transducer is manually placed on the subject’s skin, and the system uses a deep learning approach to grade the quality of ultrasound images captured at each position. The robot then adjusts its position by spiralling outwards from the starting point, moving to the location with the highest image quality score. Next, the system fine-tunes the transducer’s orientation in 5-degree increments along all three axes of rotation, informed by another deep learning module to identify the field of view. The robotic system was tested using a cardiac simulator, achieving approximately 80% accuracy in acquiring the A4Ch view when the probe was initially positioned randomly in a 6 by 6 cm area beneath the left nipple. The impact of this work would be rapid diagnostics in the Emergency Departments to reduce the length of stay in hospitals, a reduction of hospital admissions related to heart disease by accessing local healthcare communities, acceleration of clearing the post-Covid backlog, and improved quality of life and longevity of patients.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 3\",\"pages\":\"1307-1316\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11085004/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11085004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

超声心动图是诊断心血管疾病的重要工具,可以详细了解心脏功能。然而,其可及性目前受到训练有素的超声医师短缺、特定技能要求以及在重复操作过程中对专业人员施加的身体压力的限制。本文介绍了一种新的机器人系统,用于自动获取经胸超声心动图(TTE)图像。该系统在分析实时超声图像的基础上自主调整超声换能器的位置和方向,而不依赖于层析成像数据或深度传感器。最初,换能器被手动放置在受试者的皮肤上,系统使用深度学习方法对每个位置捕获的超声图像的质量进行分级。然后,机器人通过从起点向外旋转来调整其位置,移动到图像质量得分最高的位置。接下来,系统根据另一个深度学习模块的指示,沿着所有三个旋转轴以5度的增量微调换能器的方向,以识别视野。机器人系统使用心脏模拟器进行了测试,当探头最初随机放置在左乳头下方6 × 6厘米的区域时,获得A4Ch视图的准确率约为80%。这项工作的影响将是急诊科的快速诊断,以缩短住院时间,通过访问当地医疗保健社区,减少与心脏病相关的住院人数,加速清理covid后积压,以及改善患者的生活质量和寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Echo-Robot: Semi-Autonomous Cardiac Ultrasound Image Acquisition Using AI and Robotics
Echocardiography is a critical tool for diagnosing cardiovascular diseases, offering detailed insights into heart functions. However, its accessibility is currently limited by a shortage of trained sonographers, specific skill requirements, and the physical strain imposed on professionals during repetitive procedures. This article introduces a new robotic system designed to automate the acquisition of transthoracic echocardiography (TTE) images. The system autonomously adjusts the position and orientation of the ultrasound transducer based on analysing real-time ultrasound images, without relying on tomographic data or depth sensors. Initially, the transducer is manually placed on the subject’s skin, and the system uses a deep learning approach to grade the quality of ultrasound images captured at each position. The robot then adjusts its position by spiralling outwards from the starting point, moving to the location with the highest image quality score. Next, the system fine-tunes the transducer’s orientation in 5-degree increments along all three axes of rotation, informed by another deep learning module to identify the field of view. The robotic system was tested using a cardiac simulator, achieving approximately 80% accuracy in acquiring the A4Ch view when the probe was initially positioned randomly in a 6 by 6 cm area beneath the left nipple. The impact of this work would be rapid diagnostics in the Emergency Departments to reduce the length of stay in hospitals, a reduction of hospital admissions related to heart disease by accessing local healthcare communities, acceleration of clearing the post-Covid backlog, and improved quality of life and longevity of patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信