IEEE open journal of control systems最新文献

筛选
英文 中文
Generalizing Robust Control Barrier Functions From a Controller Design Perspective 从控制器设计的角度推广鲁棒控制屏障函数
IEEE open journal of control systems Pub Date : 2025-01-13 DOI: 10.1109/OJCSYS.2025.3529364
Anil Alan;Tamas G. Molnar;Aaron D. Ames;Gábor Orosz
{"title":"Generalizing Robust Control Barrier Functions From a Controller Design Perspective","authors":"Anil Alan;Tamas G. Molnar;Aaron D. Ames;Gábor Orosz","doi":"10.1109/OJCSYS.2025.3529364","DOIUrl":"https://doi.org/10.1109/OJCSYS.2025.3529364","url":null,"abstract":"While control barrier functions provide a powerful tool to endow controllers with formal safety guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for systems with model inaccuracies. This paper presents a generalized RCBF framework that unifies and extends existing notions of RCBFs for a broad class of model uncertainties. Main results are conditions for robust safety through generalized RCBFs. We apply these generalized principles for more specific design examples: a worst-case type design, an estimation-based design, and a tunable version of the latter. These examples are demonstrated to perform increasingly closer to an oracle design with ideal model information. Theoretical contributions are demonstrated on a practical example of a pendulum with unknown periodic excitation. Using numerical simulations, a comparison among design examples are carried out based on a performance metric depicting the increased likeness to the oracle design.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"54-69"},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839547","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Open Journal of Control Systems Vol. 3 2024索引IEEE控制系统开放杂志卷3
IEEE open journal of control systems Pub Date : 2025-01-10 DOI: 10.1109/OJCSYS.2025.3528596
{"title":"2024 Index IEEE Open Journal of Control Systems Vol. 3","authors":"","doi":"10.1109/OJCSYS.2025.3528596","DOIUrl":"https://doi.org/10.1109/OJCSYS.2025.3528596","url":null,"abstract":"","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"514-523"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10837576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Control Systems Society Publication Information IEEE控制系统协会出版信息
IEEE open journal of control systems Pub Date : 2025-01-07 DOI: 10.1109/OJCSYS.2024.3360366
{"title":"IEEE Control Systems Society Publication Information","authors":"","doi":"10.1109/OJCSYS.2024.3360366","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3360366","url":null,"abstract":"","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Journal of Control Systems Publication Information IEEE控制系统公开杂志出版信息
IEEE open journal of control systems Pub Date : 2025-01-07 DOI: 10.1109/OJCSYS.2024.3360362
{"title":"IEEE Open Journal of Control Systems Publication Information","authors":"","doi":"10.1109/OJCSYS.2024.3360362","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3360362","url":null,"abstract":"","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Watermarking for Finite Markov Decision Processes 有限马尔可夫决策过程的动态水印
IEEE open journal of control systems Pub Date : 2025-01-06 DOI: 10.1109/OJCSYS.2025.3526003
Jiacheng Tang;Jiguo Song;Abhishek Gupta
{"title":"Dynamic Watermarking for Finite Markov Decision Processes","authors":"Jiacheng Tang;Jiguo Song;Abhishek Gupta","doi":"10.1109/OJCSYS.2025.3526003","DOIUrl":"https://doi.org/10.1109/OJCSYS.2025.3526003","url":null,"abstract":"Dynamic watermarking is an active intrusion detection technique that can potentially detect replay attacks, spoofing attacks, and deception attacks in the feedback channel for control systems. In this paper, we develop a novel dynamic watermarking algorithm for finite-state finite-action Markov decision processes. We derive a lower bound on the mean time between false alarms and an upper bound on the mean delay between the time an attack occurs and when it is detected. We further compute the sensitivity of the performance of the control system as a function of the watermark. We demonstrate the effectiveness of the proposed dynamic watermarking algorithm by detecting a spoofing attack in a sensor network system.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"41-52"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824908","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial Undershoot in Discrete-Time Input–Output Hammerstein Systems 离散时间输入输出Hammerstein系统的初始欠冲
IEEE open journal of control systems Pub Date : 2025-01-06 DOI: 10.1109/OJCSYS.2025.3525983
Hyung Jun Kim;Mohammadreza Kamaldar;Dennis S. Bernstein
{"title":"Initial Undershoot in Discrete-Time Input–Output Hammerstein Systems","authors":"Hyung Jun Kim;Mohammadreza Kamaldar;Dennis S. Bernstein","doi":"10.1109/OJCSYS.2025.3525983","DOIUrl":"https://doi.org/10.1109/OJCSYS.2025.3525983","url":null,"abstract":"This paper considers initial undershoot in the step response of discrete-time, input-output Hammerstein (DIH) systems, which have linear unforced dynamics and nonlinear zero dynamics (ZD). Initial undershoot occurs when the step response of a system moves initially in a direction that is opposite to the direction of the asymptotic response. For DIH systems, the paper investigates the relationship among the existence of initial undershoot, the step height, the height-dependent delay, and the stability of the ZD. For linear, time-invariant systems, the height-dependent delay specializes to the relative degree. The main result of the paper provides conditions under which, for all sufficiently small step heights, initial undershoot in the step response of a DIH system implies instability of the ZD. Several examples of DIH systems are presented to illustrate these results.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"30-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concurrent Learning for Cooperative UAV Transportation of Unknown Payloads 未知载荷协同无人机运输的并行学习
IEEE open journal of control systems Pub Date : 2024-12-12 DOI: 10.1109/OJCSYS.2024.3517317
Chi-An Lee;Teng-Hu Cheng
{"title":"Concurrent Learning for Cooperative UAV Transportation of Unknown Payloads","authors":"Chi-An Lee;Teng-Hu Cheng","doi":"10.1109/OJCSYS.2024.3517317","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3517317","url":null,"abstract":"In this work, the transportation problem is addressed by directly attaching the payload to a team of unmanned aerial vehicles (UAVs). The proposed flight controller for cooperative transportation offers a solution by eliminating the need for prior knowledge of payload details, such as the center of gravity (CoG), mass, and moment of inertia (MoI). Typically, the formation for transporting the payload is evenly distributed along the payload boundary. However, this formation can lead to inefficiencies, especially when the CoG of the system is not aligned with the geometric center of the system. In such circumstances, it can result in steady-state error and shorter endurance. The developed controller incorporates a concurrent learning estimator to estimate the mass and CoG simultaneously during flight. This estimation is leveraged to balance power consumption among all UAV agents, resulting in a significant extension of flight time. The system's stability is mathematically proven through the Lyapunov theorem, ensuring a reliable combination of the estimator and adaptive controller. To validate the performance and effectiveness of the proposed approach, simulations and real-world experiments have been conducted, demonstrating the controller's capability to enhance cooperative transportation operations. The results highlight its potential to improve the field of UAV-based payload transportation and provide more efficient and cost-effective transport solutions.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"187-198"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10797683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144481797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantization Effects on Zero-Dynamics Attacks to Closed-Loop Sampled-Data Control Systems 量化对闭环采样数据控制系统零动态攻击的影响
IEEE open journal of control systems Pub Date : 2024-11-28 DOI: 10.1109/OJCSYS.2024.3508396
Xile Kang;Hideaki Ishii
{"title":"Quantization Effects on Zero-Dynamics Attacks to Closed-Loop Sampled-Data Control Systems","authors":"Xile Kang;Hideaki Ishii","doi":"10.1109/OJCSYS.2024.3508396","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3508396","url":null,"abstract":"This paper focuses on cyber-security issues of networked control systems in closed-loop forms from the perspective of quantized sampled-data systems. Quantization of control inputs adds quantization error to the plant input, resulting in certain variation in the plant output. On the other hand, sampling can introduce non-minimum phase zeros in discretized systems. We consider zero-dynamics attacks, which is a class of false data injection attacks utilizing such unstable zeros. Although non-quantized zero-dynamics attacks are undetectable from the plant output side, quantized attacks may be revealed by larger output variation. Our setting is that the attack signal is applied with the same uniform quantizer used for the control input. We evaluate the attack stealthiness in the closed-loop system setting by quantifying the output variation. Specifically, we characterize the cases for static and dynamic quantization in the attack signal, while keeping the control input statically quantized. Then we demonstrate that the attacker can reduce such output variation with a modified approach, by compensating the quantization error of the attack signal inside the attack dynamics. We provide numerical examples to illustrate the effectiveness of the proposed approaches. We show that observing the quantized control input value by a mirroring model can reveal the zero-dynamics attacks.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"18-29"},"PeriodicalIF":0.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact Recovery for System Identification With More Corrupt Data Than Clean Data 准确恢复系统识别与更多的腐败数据比干净的数据
IEEE open journal of control systems Pub Date : 2024-11-27 DOI: 10.1109/OJCSYS.2024.3507452
Baturalp Yalcin;Haixiang Zhang;Javad Lavaei;Murat Arcak
{"title":"Exact Recovery for System Identification With More Corrupt Data Than Clean Data","authors":"Baturalp Yalcin;Haixiang Zhang;Javad Lavaei;Murat Arcak","doi":"10.1109/OJCSYS.2024.3507452","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3507452","url":null,"abstract":"This paper investigates the system identification problem for linear discrete-time systems under adversaries and analyzes two lasso-type estimators. We examine non-asymptotic properties of these estimators in two separate scenarios, corresponding to deterministic and stochastic models for the attack times. We prove that when the system is stable and attacks are injected periodically, the sample complexity for exact recovery of the system dynamics is linear in terms of the dimension of the states. When adversarial attacks occur at each time instance with probability \u0000<inline-formula><tex-math>$p$</tex-math></inline-formula>\u0000, the required sample complexity for exact recovery scales polynomially in the dimension of the states and the probability \u0000<inline-formula><tex-math>$p$</tex-math></inline-formula>\u0000. This result implies almost sure convergence to the true system dynamics under the asymptotic regime. As a by-product, our estimators still learn the system correctly even when more than half of the data is compromised. We emphasize that the attack vectors are allowed to be correlated with each other in this work. This paper provides the first mathematical guarantee in the literature on learning from correlated data for dynamical systems in the case when there is less clean data than corrupt data.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Control of Endemic Epidemic Diseases With Behavioral Response 通过行为响应优化地方流行病控制
IEEE open journal of control systems Pub Date : 2024-10-30 DOI: 10.1109/OJCSYS.2024.3488567
Francesco Parino;Lorenzo Zino;Alessandro Rizzo
{"title":"Optimal Control of Endemic Epidemic Diseases With Behavioral Response","authors":"Francesco Parino;Lorenzo Zino;Alessandro Rizzo","doi":"10.1109/OJCSYS.2024.3488567","DOIUrl":"https://doi.org/10.1109/OJCSYS.2024.3488567","url":null,"abstract":"Behavioral factors play a crucial role in the emergence, spread, and containment of human diseases, significantly influencing the effectiveness of intervention measures. However, the integration of such factors into epidemic models is still limited, hindering the possibility of understanding how to optimally design interventions to mitigate epidemic outbreaks in real life. This paper aims to fill in this gap. In particular, we propose a parsimonious model that couples an epidemic compartmental model with a population game that captures the behavioral response, obtaining a nonlinear system of ordinary differential equations. Grounded on prevalence-elastic behavior—the empirically proven assumption that the disease prevalence affects the adherence to self-protective behavior—we consider a nontrivial negative feedback between contagions and adoption of self-protective behavior. We characterize the asymptotic behavior of the system, establishing conditions under which the disease is quickly eradicated or a global convergence to an endemic equilibrium is attained. In addition, we elucidate how the behavioral response affects the endemic equilibrium. Then, we formulate and solve an optimal control problem to plan cost-effective interventions for the model, accounting for their healthcare and social-economical implications. Numerical simulations on a case study calibrated on sexually transmitted diseases demonstrate and validate our findings.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"483-496"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738387","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信