Precision Cylinder Gluing With Uncertainty-Aware MPC-Enhanced DDPG

Liangshun Wu;Junsuo Qu
{"title":"Precision Cylinder Gluing With Uncertainty-Aware MPC-Enhanced DDPG","authors":"Liangshun Wu;Junsuo Qu","doi":"10.1109/OJCSYS.2025.3566323","DOIUrl":null,"url":null,"abstract":"This paper presents an uncertainty-aware optimization method for high-precision servo control in automotive dosing cylinder gluing. A comprehensive system model captures the interdependent dynamics of mechanical, hydraulic, and servo motor subsystems, formulating the control problem as a Markov Decision Process (MDP). Using Deep Deterministic Policy Gradient (DDPG) reinforcement learning with Model Predictive Control (MPC), the approach combines MPC's optimization capabilities with DDPG's adaptive learning, improving resilience to uncertainties. The DDPG Actor refines the MPC baseline, while uncertainty analysis in the MPC objective anticipates future variations. The Critic evaluates Q-values with uncertainty feedback. Simulations and real-world tests confirm the method's stability, precision, and reliability for high-precision industrial gluing.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"130-143"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981597","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10981597/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an uncertainty-aware optimization method for high-precision servo control in automotive dosing cylinder gluing. A comprehensive system model captures the interdependent dynamics of mechanical, hydraulic, and servo motor subsystems, formulating the control problem as a Markov Decision Process (MDP). Using Deep Deterministic Policy Gradient (DDPG) reinforcement learning with Model Predictive Control (MPC), the approach combines MPC's optimization capabilities with DDPG's adaptive learning, improving resilience to uncertainties. The DDPG Actor refines the MPC baseline, while uncertainty analysis in the MPC objective anticipates future variations. The Critic evaluates Q-values with uncertainty feedback. Simulations and real-world tests confirm the method's stability, precision, and reliability for high-precision industrial gluing.
具有不确定意识的mpc -增强型DDPG的精密气缸粘接
提出了一种汽车加药缸上胶高精度伺服控制的不确定性感知优化方法。一个全面的系统模型捕获了机械、液压和伺服电机子系统的相互依赖的动力学,将控制问题表述为马尔可夫决策过程(MDP)。该方法将深度确定性策略梯度(DDPG)强化学习与模型预测控制(MPC)相结合,将MPC的优化能力与DDPG的自适应学习相结合,提高了对不确定性的适应能力。DDPG Actor细化MPC基线,而MPC目标中的不确定性分析预测未来的变化。批评家用不确定性反馈评价q值。仿真和实际测试证实了该方法的稳定性、精度和可靠性,适用于高精度工业胶接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信