Data-Driven Mobile Health: System Identification and Hybrid Model Predictive Control to Deliver Personalized Physical Activity Interventions

Mohamed El Mistiri;Owais Khan;César A. Martin;Eric Hekler;Daniel E. Rivera
{"title":"Data-Driven Mobile Health: System Identification and Hybrid Model Predictive Control to Deliver Personalized Physical Activity Interventions","authors":"Mohamed El Mistiri;Owais Khan;César A. Martin;Eric Hekler;Daniel E. Rivera","doi":"10.1109/OJCSYS.2025.3538263","DOIUrl":null,"url":null,"abstract":"The integration of control systems principles in behavioral medicine involves developing interventions that can be personalized to foster healthy behaviors, such as meaningful and consistent engagement in physical activity. In this paper, system identification and hybrid model predictive control are applied to design individualized behavioral interventions using the <italic>control optimization trial (COT)</i> framework. The paper details the multiple stages of a COT, from experimental design in system identification to controller implementation, and demonstrates its efficacy using participant data from <italic>Just Walk</i>, an intervention that promotes walking behavior in sedentary adults. Mixed partitioning of estimation and validation data is applied to estimate ARX models for an illustrative participant, selecting the model with the best performance over a weighted norm balancing predictive ability with overall data fit. This model serves as the internal model in a three-degree-of-freedom Kalman filter-based Hybrid Model Predictive Controller (3DoF-KF HMPC) that provides “ambitious but doable” goals for initiation and maintenance phases of the physical activity intervention. Performance and robustness in a closed-loop setting are evaluated via both nominal and Monte Carlo simulation; the latter confirms the inherent robustness properties of the controller under plant-model mismatch. These results serve as proof of concept for the COT approach, which is currently being evaluated with human participants in the clinical trial <italic>YourMove</i> (R01CA244777, NCT05598996).","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"83-102"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872807","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872807/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of control systems principles in behavioral medicine involves developing interventions that can be personalized to foster healthy behaviors, such as meaningful and consistent engagement in physical activity. In this paper, system identification and hybrid model predictive control are applied to design individualized behavioral interventions using the control optimization trial (COT) framework. The paper details the multiple stages of a COT, from experimental design in system identification to controller implementation, and demonstrates its efficacy using participant data from Just Walk, an intervention that promotes walking behavior in sedentary adults. Mixed partitioning of estimation and validation data is applied to estimate ARX models for an illustrative participant, selecting the model with the best performance over a weighted norm balancing predictive ability with overall data fit. This model serves as the internal model in a three-degree-of-freedom Kalman filter-based Hybrid Model Predictive Controller (3DoF-KF HMPC) that provides “ambitious but doable” goals for initiation and maintenance phases of the physical activity intervention. Performance and robustness in a closed-loop setting are evaluated via both nominal and Monte Carlo simulation; the latter confirms the inherent robustness properties of the controller under plant-model mismatch. These results serve as proof of concept for the COT approach, which is currently being evaluated with human participants in the clinical trial YourMove (R01CA244777, NCT05598996).
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信