Safe and Robust Binary Classification and Fault Detection Using Reinforcement Learning

Josh Netter;Kyriakos G. Vamvoudakis;Timothy F. Walsh;Jaideep Ray
{"title":"Safe and Robust Binary Classification and Fault Detection Using Reinforcement Learning","authors":"Josh Netter;Kyriakos G. Vamvoudakis;Timothy F. Walsh;Jaideep Ray","doi":"10.1109/OJCSYS.2025.3572375","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning-based method utilizing the Soft Actor-Critic (SAC) algorithm to train a binary Support Vector Machine (SVM) classifier. This classifier is designed to identify valid input spaces in high-dimensional, highly constrained systems while minimizing the total runtime of offline simulations. The simulations adapt their runtime based on the likelihood that a given training input will be informative to the classifier. Furthermore, we introduce a method for using the trained SAC model to predict whether a desired system input is likely to violate constraints, along with a technique to adjust the input as necessary. Additionally, we explore the potential of this model to detect faults or adversarial attacks within the system. The effectiveness of our approach is demonstrated through various simulations of challenging classification problems and a constrained quadrotor model.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"172-186"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11010134/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a learning-based method utilizing the Soft Actor-Critic (SAC) algorithm to train a binary Support Vector Machine (SVM) classifier. This classifier is designed to identify valid input spaces in high-dimensional, highly constrained systems while minimizing the total runtime of offline simulations. The simulations adapt their runtime based on the likelihood that a given training input will be informative to the classifier. Furthermore, we introduce a method for using the trained SAC model to predict whether a desired system input is likely to violate constraints, along with a technique to adjust the input as necessary. Additionally, we explore the potential of this model to detect faults or adversarial attacks within the system. The effectiveness of our approach is demonstrated through various simulations of challenging classification problems and a constrained quadrotor model.
基于强化学习的安全鲁棒二值分类与故障检测
在本文中,我们提出了一种基于学习的方法,利用软Actor-Critic (SAC)算法来训练二进制支持向量机(SVM)分类器。该分类器旨在识别高维,高度约束系统中的有效输入空间,同时最小化离线模拟的总运行时间。仿真根据给定训练输入对分类器提供信息的可能性来调整其运行时间。此外,我们还介绍了一种使用训练好的SAC模型来预测所需系统输入是否可能违反约束的方法,以及一种根据需要调整输入的技术。此外,我们还探索了该模型在检测系统内的故障或对抗性攻击方面的潜力。我们的方法的有效性是通过具有挑战性的分类问题和约束四旋翼模型的各种模拟证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信