Anil Alan;Tamas G. Molnar;Aaron D. Ames;Gábor Orosz
{"title":"从控制器设计的角度推广鲁棒控制屏障函数","authors":"Anil Alan;Tamas G. Molnar;Aaron D. Ames;Gábor Orosz","doi":"10.1109/OJCSYS.2025.3529364","DOIUrl":null,"url":null,"abstract":"While control barrier functions provide a powerful tool to endow controllers with formal safety guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for systems with model inaccuracies. This paper presents a generalized RCBF framework that unifies and extends existing notions of RCBFs for a broad class of model uncertainties. Main results are conditions for robust safety through generalized RCBFs. We apply these generalized principles for more specific design examples: a worst-case type design, an estimation-based design, and a tunable version of the latter. These examples are demonstrated to perform increasingly closer to an oracle design with ideal model information. Theoretical contributions are demonstrated on a practical example of a pendulum with unknown periodic excitation. Using numerical simulations, a comparison among design examples are carried out based on a performance metric depicting the increased likeness to the oracle design.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"54-69"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839547","citationCount":"0","resultStr":"{\"title\":\"Generalizing Robust Control Barrier Functions From a Controller Design Perspective\",\"authors\":\"Anil Alan;Tamas G. Molnar;Aaron D. Ames;Gábor Orosz\",\"doi\":\"10.1109/OJCSYS.2025.3529364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While control barrier functions provide a powerful tool to endow controllers with formal safety guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for systems with model inaccuracies. This paper presents a generalized RCBF framework that unifies and extends existing notions of RCBFs for a broad class of model uncertainties. Main results are conditions for robust safety through generalized RCBFs. We apply these generalized principles for more specific design examples: a worst-case type design, an estimation-based design, and a tunable version of the latter. These examples are demonstrated to perform increasingly closer to an oracle design with ideal model information. Theoretical contributions are demonstrated on a practical example of a pendulum with unknown periodic excitation. Using numerical simulations, a comparison among design examples are carried out based on a performance metric depicting the increased likeness to the oracle design.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"54-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839547\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839547/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839547/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalizing Robust Control Barrier Functions From a Controller Design Perspective
While control barrier functions provide a powerful tool to endow controllers with formal safety guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for systems with model inaccuracies. This paper presents a generalized RCBF framework that unifies and extends existing notions of RCBFs for a broad class of model uncertainties. Main results are conditions for robust safety through generalized RCBFs. We apply these generalized principles for more specific design examples: a worst-case type design, an estimation-based design, and a tunable version of the latter. These examples are demonstrated to perform increasingly closer to an oracle design with ideal model information. Theoretical contributions are demonstrated on a practical example of a pendulum with unknown periodic excitation. Using numerical simulations, a comparison among design examples are carried out based on a performance metric depicting the increased likeness to the oracle design.