智能体数量与稀疏可观察性指标的关系

T. Shinohara;T. Namerikawa
{"title":"智能体数量与稀疏可观察性指标的关系","authors":"T. Shinohara;T. Namerikawa","doi":"10.1109/OJCSYS.2025.3567867","DOIUrl":null,"url":null,"abstract":"The state estimation problem in the presence of malicious sensor attacks is commonly referred to as a secure state estimation problem. Central to addressing this problem is the concept of the sparse observability index, defined as the largest integer <inline-formula><tex-math>$ \\delta$</tex-math></inline-formula> for which the system remains observable after the removal of any <inline-formula><tex-math>$\\delta$</tex-math></inline-formula> sensors. This index plays a critical role in quantifying the resilience of the system, as a higher <inline-formula><tex-math>$\\delta$</tex-math></inline-formula> enables unique state reconstruction despite the presence of more compromised sensors. In this study, for undirected multi-agent systems consisting of <inline-formula><tex-math>$ n$</tex-math></inline-formula> agents, we analyze the relationship between the number of agents <inline-formula><tex-math>$ n$</tex-math></inline-formula> and the sparse observability index <inline-formula><tex-math>$ \\delta$</tex-math></inline-formula> for effective secure state estimation. In particular, we consider four typical graph structures: path, cycle, complete, and complete bipartite graphs. Our analysis reveals that <inline-formula><tex-math>$\\delta$</tex-math></inline-formula> does not increase monotonically with <inline-formula><tex-math>$n$</tex-math></inline-formula>, and that resilience is intricately tied to the underlying network structure. Notably, we demonstrate that the system exhibits enhanced resilience when the number of agents <inline-formula><tex-math>$n$</tex-math></inline-formula> is a prime number, although the specifics of this relationship vary depending on the graph topology.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"144-155"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10989748","citationCount":"0","resultStr":"{\"title\":\"Relationship Between the Number of Agents and Sparse Observability Index\",\"authors\":\"T. Shinohara;T. Namerikawa\",\"doi\":\"10.1109/OJCSYS.2025.3567867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state estimation problem in the presence of malicious sensor attacks is commonly referred to as a secure state estimation problem. Central to addressing this problem is the concept of the sparse observability index, defined as the largest integer <inline-formula><tex-math>$ \\\\delta$</tex-math></inline-formula> for which the system remains observable after the removal of any <inline-formula><tex-math>$\\\\delta$</tex-math></inline-formula> sensors. This index plays a critical role in quantifying the resilience of the system, as a higher <inline-formula><tex-math>$\\\\delta$</tex-math></inline-formula> enables unique state reconstruction despite the presence of more compromised sensors. In this study, for undirected multi-agent systems consisting of <inline-formula><tex-math>$ n$</tex-math></inline-formula> agents, we analyze the relationship between the number of agents <inline-formula><tex-math>$ n$</tex-math></inline-formula> and the sparse observability index <inline-formula><tex-math>$ \\\\delta$</tex-math></inline-formula> for effective secure state estimation. In particular, we consider four typical graph structures: path, cycle, complete, and complete bipartite graphs. Our analysis reveals that <inline-formula><tex-math>$\\\\delta$</tex-math></inline-formula> does not increase monotonically with <inline-formula><tex-math>$n$</tex-math></inline-formula>, and that resilience is intricately tied to the underlying network structure. Notably, we demonstrate that the system exhibits enhanced resilience when the number of agents <inline-formula><tex-math>$n$</tex-math></inline-formula> is a prime number, although the specifics of this relationship vary depending on the graph topology.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"144-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10989748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10989748/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10989748/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存在恶意传感器攻击的状态估计问题通常被称为安全状态估计问题。解决这个问题的核心是稀疏可观察性指数的概念,定义为在移除任何$\delta$传感器后系统仍然可观察的最大整数$\delta$。该指数在量化系统弹性方面起着至关重要的作用,因为尽管存在更多受损的传感器,较高的$\delta$可以实现唯一的状态重建。在本研究中,对于由$ n$智能体组成的无向多智能体系统,我们分析了智能体数目$ n$与稀疏可观察性指数$ \delta$之间的关系,以获得有效的安全状态估计。特别地,我们考虑了四种典型的图结构:路径图、循环图、完全图和完全二部图。我们的分析表明,$\delta$不会随着$n$单调地增加,并且弹性与底层网络结构错综复杂地联系在一起。值得注意的是,我们证明了当代理数量$n$为素数时,系统表现出增强的弹性,尽管这种关系的具体情况取决于图拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Between the Number of Agents and Sparse Observability Index
The state estimation problem in the presence of malicious sensor attacks is commonly referred to as a secure state estimation problem. Central to addressing this problem is the concept of the sparse observability index, defined as the largest integer $ \delta$ for which the system remains observable after the removal of any $\delta$ sensors. This index plays a critical role in quantifying the resilience of the system, as a higher $\delta$ enables unique state reconstruction despite the presence of more compromised sensors. In this study, for undirected multi-agent systems consisting of $ n$ agents, we analyze the relationship between the number of agents $ n$ and the sparse observability index $ \delta$ for effective secure state estimation. In particular, we consider four typical graph structures: path, cycle, complete, and complete bipartite graphs. Our analysis reveals that $\delta$ does not increase monotonically with $n$, and that resilience is intricately tied to the underlying network structure. Notably, we demonstrate that the system exhibits enhanced resilience when the number of agents $n$ is a prime number, although the specifics of this relationship vary depending on the graph topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信