Frontiers in radiologyPub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1445676
Valentina Elisabetta Lolli, Adrien Guenego, Niloufar Sadeghi, Lise Jodaitis, Boris Lubicz, Fabio Silvio Taccone, Elisa Gouvea Bogossian
{"title":"CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art.","authors":"Valentina Elisabetta Lolli, Adrien Guenego, Niloufar Sadeghi, Lise Jodaitis, Boris Lubicz, Fabio Silvio Taccone, Elisa Gouvea Bogossian","doi":"10.3389/fradi.2024.1445676","DOIUrl":"10.3389/fradi.2024.1445676","url":null,"abstract":"<p><p>CT perfusion (CTP) images can be easily and rapidly obtained on all modern CT scanners and have become part of the routine imaging protocol of patients with aneurysmal subarachnoid haemorrhage (aSAH). There is a growing body of evidence supporting the use of CTP imaging in these patients, however, there are significant differences in the software packages and methods of analysing CTP. In. addition, no quantitative threshold values for tissue at risk (TAR) have been validated in this patients' population. Here we discuss the contribution of the technique in the identification of patients at risk of aSAH-related delayed cerebral ischemia (DCI) and in the assessment of the response to endovascular rescue therapy (ERT). We also address the limitations and pitfalls of automated CTP postprocessing that are specific to aSAH patients as compared to acute ischemic stroke (AIS).</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-10-01eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1322851
Claudia F E Kirsch, Syed Ali Khurram, Daniel Lambert, Puneet Belani, Puneet S Pawha, Akbar Alipour, Shams Rashid, Mackenzie T Herb, Sera Saju, Yijuan Zhu, Bradley N Delman, Hung-Mo Lin, Priti Balchandani
{"title":"Seven-tesla magnetic resonance imaging of the nervus terminalis, olfactory tracts, and olfactory bulbs in COVID-19 patients with anosmia and hypogeusia.","authors":"Claudia F E Kirsch, Syed Ali Khurram, Daniel Lambert, Puneet Belani, Puneet S Pawha, Akbar Alipour, Shams Rashid, Mackenzie T Herb, Sera Saju, Yijuan Zhu, Bradley N Delman, Hung-Mo Lin, Priti Balchandani","doi":"10.3389/fradi.2024.1322851","DOIUrl":"https://doi.org/10.3389/fradi.2024.1322851","url":null,"abstract":"<p><strong>Introduction: </strong>Linking olfactory epithelium to the central nervous system are cranial nerve 1, the olfactory nerve, and cranial nerve \"0,\" and the nervus terminalis (NT). Since there is minimal expression of angiotensin-converting enzyme-2 (ACE-2) in the olfactory nerve, it is unclear how SARS-CoV-2 causes anosmia (loss of smell) and hypogeusia (reduction of taste). In animal models, NT expresses ACE-2 receptors, suggesting a possible SARS-CoV-2 viral entry site in humans. The purpose of this study was to determine whether ultra-high-field 7 T magnetic resonance imaging (MRI) could visualize the NT, olfactory bulbs (OB), and olfactory tract (OT) in healthy controls and COVID-19 anosmia or hypogeusia and to qualitatively assess for volume loss and T2 alterations.</p><p><strong>Methods: </strong>In this study, 7 T MRI was used to evaluate the brain and olfactory regions in 45 COVID-19 patients and 29 healthy controls. Neuroimaging was qualitatively assessed by four board-certified neuroradiologists who were blinded to outcome assignments: for the presence or absence of NT; for OB, OT, and brain volume loss; and altered T2 signal, white matter T2 hyperintensities, microhemorrhages, enlarged perivascular spaces, and brainstem involvement.</p><p><strong>Results: </strong>NT was identifiable in all COVID-19 patients and controls. T2 hyperintensity in the NT, OB, and OT in COVID-19 patients with anosmia or hypogeusia was statistically significant compared to controls and COVID-19 patients without anosmia or hypogeusia.</p><p><strong>Discussion: </strong>On 7 T MRI, NT was radiographically identifiable, adjacent to OB and OT. In COVID-19 anosmia and hypogeusia, T2 hyperintensity of NT, OB, and OT was statistically significant compared to COVID-19 patients without anosmia or hypogeusia and controls. The NT may be a potential entry site for SARs-CoV-2 and may play a role in the pathophysiology of COVID-19 anosmia.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-09-27eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1476227
RuiJiang Liu, Lei Cao, JingXin Du, Ping Xie
{"title":"Intranodal lymphangiography combined with foam sclerotherapy embolization of thoracic duct in the treatment of postoperative chylous leakage for thyroid carcinoma: a case report and review.","authors":"RuiJiang Liu, Lei Cao, JingXin Du, Ping Xie","doi":"10.3389/fradi.2024.1476227","DOIUrl":"https://doi.org/10.3389/fradi.2024.1476227","url":null,"abstract":"<p><strong>Background: </strong>Chylous leakage (CL) is a rare but significant complication following cervical lymph node dissection, particularly in patients with papillary thyroid carcinoma (PTC). This condition is characterized by the leakage of lymphatic fluid, which can result in severe consequences such as malnutrition, immunosuppression, and prolonged hospital stays. Conventional treatments for CL include conservative measures and surgical interventions, but these approaches often face limitations and challenges. This case report discusses a successful treatment of CL using thoracic duct lymphangiography combined with local injection of sclerotherapy, demonstrating a novel and effective approach for managing this complication.</p><p><strong>Case presentation: </strong>A 72-year-old female patient with PTC underwent total thyroidectomy and bilateral Level VI and left Levels II, III, IV, and V cervical lymph node dissection. Postoperatively, the patient developed milky drainage indicative of CL. Despite initial conservative treatments including pressure bandaging, negative pressure drainage, and nutritional adjustments, the patient's condition did not improve. The patient declined surgical options, leading to the decision to perform thoracic duct lymphangiography combined with local injection of sclerotherapy. Under real-time ultrasound guidance, the inguinal lymph nodes were accessed, and lipiodol was injected to visualize the thoracic duct. Subsequently, foam sclerosant was injected at the leakage site under fluoroscopic guidance. The procedure resulted in a significant reduction of chyle leakage, and the patient was discharged with no recurrence during a 1-year follow-up.</p><p><strong>Conclusions: </strong>This case illustrates that thoracic duct angiography combined with local injection of sclerotherapy can be an effective treatment for high-output CL when conservative measures fail and surgical intervention is not preferred. The approach offers a minimally invasive alternative that can reduce complications and improve patient outcomes. The successful management of CL in this case underscores the potential of advanced interventional techniques in treating lymphatic system complications and highlights the need for further research to establish standardized treatment protocols.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-09-16eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1463236
Dominic Gascho
{"title":"Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy.","authors":"Dominic Gascho","doi":"10.3389/fradi.2024.1463236","DOIUrl":"10.3389/fradi.2024.1463236","url":null,"abstract":"<p><p>This article explores the potential of photon-counting computed tomography (CT) in forensic medicine for a range of forensic applications. Photon-counting CT surpasses conventional CT in several key areas. It boasts superior spatial and contrast resolution, enhanced image quality at low x-ray energies, and spectral imaging capabilities that enable more precise material differentiation. These advantages translate to superior visualization of bone structures, foreign bodies, and soft tissues in postmortem examinations. The article discusses the technical principles of photon-counting CT detectors and highlights its potential applications in forensic imaging, including high-resolution virtual autopsies, pediatric forensic CT, trauma analysis, and bone density measurements. Furthermore, advancements in vascular imaging and soft tissue contrast promise to propel CT-based death investigations to an even more prominent role. The article concludes by emphasizing the immense potential of this new technology in forensic medicine and anthropology.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-09-05eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1332535
Paniz Sabeghi, Ketki K Kinkar, Gloria Del Rosario Castaneda, Liesl S Eibschutz, Brandon K K Fields, Bino A Varghese, Dakshesh B Patel, Ali Gholamrezanezhad
{"title":"Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.","authors":"Paniz Sabeghi, Ketki K Kinkar, Gloria Del Rosario Castaneda, Liesl S Eibschutz, Brandon K K Fields, Bino A Varghese, Dakshesh B Patel, Ali Gholamrezanezhad","doi":"10.3389/fradi.2024.1332535","DOIUrl":"https://doi.org/10.3389/fradi.2024.1332535","url":null,"abstract":"<p><p>Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-08-30eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1445701
Mohammed U Syed, Steve J Stephen, Akm A Rahman
{"title":"Radiologic overview of sinonasal lesions.","authors":"Mohammed U Syed, Steve J Stephen, Akm A Rahman","doi":"10.3389/fradi.2024.1445701","DOIUrl":"https://doi.org/10.3389/fradi.2024.1445701","url":null,"abstract":"<p><p>Sinonasal tumors are often malignant and comprise approximately 3% of all head and neck malignancies. Half of these tumors arise in the nasal cavity, and other common locations of origin include the ethmoid and maxillary sinuses. Some unique clinical features are anosmia and altered phonation but the most common general features include headache, epistaxis, and diplopia. CT and MRI may be used to assess tumor location, invasion of adjacent tissue, presence of metastasis, internal tumor heterogeneity, and contrast enhancement. Local invasion of the tumor beyond the sinonasal tract can impact adjacent structures such as the cranial nerves, skull base, branches of the internal carotid artery, and orbit leading to neurologic signs, facial pain, and diplopia. Imaging is used in the diagnosis, staging, and treatment planning of sinonasal tumors. This collection of benign and malignant sinonasal tumors will include some rare and unique cases with an emphasis on imaging features demonstrating a wide variety of pathologies.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-08-29eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1466498
Rajat Vashistha, Viktor Vegh, Hamed Moradi, Amanda Hammond, Kieran O'Brien, David Reutens
{"title":"Modular GAN: positron emission tomography image reconstruction using two generative adversarial networks.","authors":"Rajat Vashistha, Viktor Vegh, Hamed Moradi, Amanda Hammond, Kieran O'Brien, David Reutens","doi":"10.3389/fradi.2024.1466498","DOIUrl":"10.3389/fradi.2024.1466498","url":null,"abstract":"<p><strong>Introduction: </strong>The reconstruction of PET images involves converting sinograms, which represent the measured counts of radioactive emissions using detector rings encircling the patient, into meaningful images. However, the quality of PET data acquisition is impacted by physical factors, photon count statistics and detector characteristics, which affect the signal-to-noise ratio, resolution and quantitative accuracy of the resulting images. To address these influences, correction methods have been developed to mitigate each of these issues separately. Recently, generative adversarial networks (GANs) based on machine learning have shown promise in learning the complex mapping between acquired PET data and reconstructed tomographic images. This study aims to investigate the properties of training images that contribute to GAN performance when non-clinical images are used for training. Additionally, we describe a method to correct common PET imaging artefacts without relying on patient-specific anatomical images.</p><p><strong>Methods: </strong>The modular GAN framework includes two GANs. Module 1, resembling Pix2pix architecture, is trained on non-clinical sinogram-image pairs. Training data are optimised by considering image properties defined by metrics. The second module utilises adaptive instance normalisation and style embedding to enhance the quality of images from Module 1. Additional perceptual and patch-based loss functions are employed in training both modules. The performance of the new framework was compared with that of existing methods, (filtered backprojection (FBP) and ordered subset expectation maximisation (OSEM) without and with point spread function (OSEM-PSF)) with respect to correction for attenuation, patient motion and noise in simulated, NEMA phantom and human imaging data. Evaluation metrics included structural similarity (SSIM), peak-signal-to-noise ratio (PSNR), relative root mean squared error (rRMSE) for simulated data, and contrast-to-noise ratio (CNR) for NEMA phantom and human data.</p><p><strong>Results: </strong>For simulated test data, the performance of the proposed framework was both qualitatively and quantitatively superior to that of FBP and OSEM. In the presence of noise, Module 1 generated images with a SSIM of 0.48 and higher. These images exhibited coarse structures that were subsequently refined by Module 2, yielding images with an SSIM higher than 0.71 (at least 22% higher than OSEM). The proposed method was robust against noise and motion. For NEMA phantoms, it achieved higher CNR values than OSEM. For human images, the CNR in brain regions was significantly higher than that of FBP and OSEM (<i>p</i> < 0.05, paired <i>t</i>-test). The CNR of images reconstructed with OSEM-PSF was similar to those reconstructed using the proposed method.</p><p><strong>Conclusion: </strong>The proposed image reconstruction method can produce PET images with artefact correction.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-08-07eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1327406
Neil D Shah, Mayil Krishnam, Bharat Ambale Venkatesh, Fouzia Khan, Michele Smith, Darwin R Jones, Patrick Koon, Xianglun Mao, Martin A Janich, Anja C S Brau, Michael Salerno, Rajesh Dash, Frandics Chan, Phillip C Yang
{"title":"Wideband radiofrequency pulse sequence for evaluation of myocardial scar in patients with cardiac implantable devices.","authors":"Neil D Shah, Mayil Krishnam, Bharat Ambale Venkatesh, Fouzia Khan, Michele Smith, Darwin R Jones, Patrick Koon, Xianglun Mao, Martin A Janich, Anja C S Brau, Michael Salerno, Rajesh Dash, Frandics Chan, Phillip C Yang","doi":"10.3389/fradi.2024.1327406","DOIUrl":"10.3389/fradi.2024.1327406","url":null,"abstract":"<p><strong>Background: </strong>Cardiac magnetic resonance is a useful clinical tool to identify late gadolinium enhancement in heart failure patients with implantable electronic devices. Identification of LGE in patients with CIED is limited by artifact, which can be improved with a wide band radiofrequency pulse sequence.</p><p><strong>Objective: </strong>The authors hypothesize that image quality of LGE images produced using wide-band pulse sequence in patients with devices is comparable to image quality produced using standard LGE sequences in patients without devices.</p><p><strong>Methods: </strong>Two independent readers reviewed LGE images of 16 patients with CIED and 7 patients without intracardiac devices to assess for image quality, device-related artifact, and presence of LGE using the American Society of Echocardiography/American Heart Association 17 segment model of the heart on a 4-point Likert scale. The mean and standard deviation for image quality and artifact rating were determined. Inter-observer reliability was determined by calculating Cohen's kappa coefficient. Statistical significance was determined by <i>T</i>-test as a <i>p</i> {less than or equal to} 0.05 with a 95% confidence interval.</p><p><strong>Results: </strong>All patients underwent CMR without any adverse events. Overall IQ of WB LGE images was significantly better in patients with devices compared to standard LGE in patients without devices (<i>p</i> = 0.001) with reduction in overall artifact rating (<i>p</i> = 0.05).</p><p><strong>Conclusion: </strong>Our study suggests wide-band pulse sequence for LGE can be applied safely to heart failure patients with devices in detection of LV myocardial scar while maintaining image quality, reducing artifact, and following routine imaging protocol after intravenous gadolinium contrast administration.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Warren A. Campbell, J.F.B. Chick, David S. Shin, M. Makary
{"title":"Value of interventional radiology and their contributions to modern medical systems","authors":"Warren A. Campbell, J.F.B. Chick, David S. Shin, M. Makary","doi":"10.3389/fradi.2024.1403761","DOIUrl":"https://doi.org/10.3389/fradi.2024.1403761","url":null,"abstract":"Interventional radiology (IR) is a unique specialty that incorporates a diverse set of skills ranging from imaging, procedures, consultation, and patient management. Understanding how IR generates value to the healthcare system is important to review from various perspectives. IR specialists need to understand how to meet demands from various stakeholders to expand their practice improving patient care. Thus, this review discusses the domains of value contributed to medical systems and outlines the parameters of success. IR benefits five distinct parties: patients, practitioners, payers, employers, and innovators. Value to patients and providers is delivered through a wide set of diagnostic and therapeutic interventions. Payers and hospital systems financially benefit from the reduced cost in medical management secondary to fast patient recovery, outpatient procedures, fewer complications, and the prestige of offering diverse expertise for complex patients. Lastly, IR is a field of rapid innovation implementing new procedural technology and techniques. Overall, IR must actively advocate for further growth and influence in the medical field as their value continues to expand in multiple domains. Despite being a nascent specialty, IR has become indispensable to modern medical practice.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in radiologyPub Date : 2024-06-28eCollection Date: 2024-01-01DOI: 10.3389/fradi.2024.1416672
Anouk S Verschuur, Chantal M W Tax, Martijn F Boomsma, Helen L Carlson, Gerda van Wezel-Meijler, Regan King, Alexander Leemans, Lara M Leijser
{"title":"Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data.","authors":"Anouk S Verschuur, Chantal M W Tax, Martijn F Boomsma, Helen L Carlson, Gerda van Wezel-Meijler, Regan King, Alexander Leemans, Lara M Leijser","doi":"10.3389/fradi.2024.1416672","DOIUrl":"10.3389/fradi.2024.1416672","url":null,"abstract":"<p><strong>Purpose: </strong>The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures.</p><p><strong>Methods: </strong>For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures.</p><p><strong>Results: </strong>Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%.</p><p><strong>Conclusion: </strong>Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}