Yang Ding, Erming Feng, Siyuan Lu, Jianhui Chang, Caoyu Long, S.C. Tong, Hengyue Li, Junliang Yang
{"title":"Stress Regulation via Surface Micro-etching and Reconstruction for Enhancing Triple-Cation Perovskite Solar Cells with the Efficiency of 25.54%","authors":"Yang Ding, Erming Feng, Siyuan Lu, Jianhui Chang, Caoyu Long, S.C. Tong, Hengyue Li, Junliang Yang","doi":"10.1039/d4ee04248d","DOIUrl":"https://doi.org/10.1039/d4ee04248d","url":null,"abstract":"Residual stresses generated within perovskite films during the high-temperature annealing and cooling process are the key contributors to reduce device performance and lifespan deterioration. Herein, a strategy of surface micro-etching and reconstruction is developed to regulate the stresses in triple-cation (formamidine, methylamine, cesium) perovskite film. Precise stoichiometric mixture of L-lactic acid (LA) and isopropanol (IPA) is used to controllably dissolve the surface of perovskite film, followed by octylammonium iodide (OAI) post-treatment, enabling a sinking reconstruction of 2D perovskite from surface to bulk phase and achieving a benign transition from surface tensile stress to compressive stress, as well as a more matchable interface energy level. As a result, the target perovskite solar cells (PSCs) yield an obviously enhanced power conversion efficiency (PCE) of 25.54%, which is the highest reported PCE for triple-cation PSCs. Meanwhile, PSC modules with 10.4 cm2 achieve a PCE of 21.02%. Furthermore, the surface micro-etched and reconstructed PSCs exhibit superior stability, and the PSC devices without encapsulation can maintain 83% of original efficiency after 500 hours illumination at maximum power point (MPPT) tracking in N2 atmosphere. The research provides a valuable avenue to improve PSC stability and efficiency by regulating residual stresses through surface micro-etching and reconstruction.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"194 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li
{"title":"Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries","authors":"Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li","doi":"10.1039/d4ee03005b","DOIUrl":"https://doi.org/10.1039/d4ee03005b","url":null,"abstract":"Great efforts have been devoted to the development of bifunctional electrocatalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) in zinc–air batteries (ZABs). Here we report a thermal evaporating-trapping synergistic strategy to fabricate bifunctional electrocatalyst of flexible N-doped carbon fiber cloth loaded with both CoFe-oxide nanoparticles and single-atom Co/Fe-Nx sites, in which the thermal evaporation process functions in both downsizing CoFe-oxide nanoparticles and trapping the evaporated Co/Fe species to generate Co/Fe-Nx sites. The obtained flexible electrocatalyst, directly served as an oxygen electrode, displays a small potential gap of 0.542 V for OER/ORR, large peak power densities (liquid-state ZAB: 237.4 mW cm–2; solid-state ZAB: 141.1 mW cm-2), and excellent charge-discharge cycling stability without decay after 1000 cycles. Furthermore, in situ Raman spectroscopy characterization reveals that CoFe2O4 species is responsible for the OER catalysis.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"2 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyu Shi, Pengfei Ding, Jintao Zhu, Zhenyu Chen, Shuangjiao Gao, Xueliang Yu, Xiaochun Liao, Quan Liu, Ziyi Ge
{"title":"Well-regulated Structures Featured Giant-molecule Acceptors Enable Long-term Stability and High-Performance Binary Organic Solar Cells","authors":"Jingyu Shi, Pengfei Ding, Jintao Zhu, Zhenyu Chen, Shuangjiao Gao, Xueliang Yu, Xiaochun Liao, Quan Liu, Ziyi Ge","doi":"10.1039/d4ee03754e","DOIUrl":"https://doi.org/10.1039/d4ee03754e","url":null,"abstract":"The well-defined structures featured giant-molecule acceptors (GMAs) can exhibit unique properties of small-molecule acceptors and polymers simultaneously, and the consecutive innovations in materials design have enabled GMAs-based organic solar cells (OSCs) to possess outstanding devices power conversion efficiency (PCE) over 19% and extended long-term stability. Here, through systematically selecting the numbers and positions of selenium atom, π-spacer linking units and the outermost conjugate ring of central core of monomers, four novel GMAs are successfully synthesized, GMA-SSS, GMA-SSeS, GMA-SeSSe and GMA-SeSeSe. Surprisingly, PM6:GMA-SSeS-based OSC yields the highest PCE of 19.37% with remarkably open current voltage of 0.917 V with reduced voltage loss (ΔE3 = 0.246 eV), and excellent fill factor of 77.12%. Furthermore, when devices annealed at 100 °C, the PM6:GMA-SSeS and PM6:GMA-SSS-based OSCs exhibit remarkably extended t80% lifetimes of 5600 and 5250 h, respectively. Our work indicates that the selenium substituted regulation of GMAs structures in linking units and monomers is a valuable approach to obtain high-performance and long-term stability devices at the same time, shedding light on the further development of GMAs-based OSCs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Airan Li, Longquan Wang, Jiankang Li and Takao Mori
{"title":"Global softening to manipulate sound velocity for reliable high-performance MgAgSb thermoelectrics†","authors":"Airan Li, Longquan Wang, Jiankang Li and Takao Mori","doi":"10.1039/D4EE03521F","DOIUrl":"10.1039/D4EE03521F","url":null,"abstract":"<p >High-performance thermoelectric materials at room temperature are eagerly pursued due to their promising applications in the Internet of Things for sustainable power supply. Reducing sound velocity by softening chemical bonds is considered an effective approach to lowering thermal conductivity and enhancing thermoelectric performance. Here, different from softening chemical bonds at the atomic scale, we introduce a global softening strategy, which macroscopically softens the overall material to manipulate its sound velocity. This is demonstrated in MgAgSb, one of the most promising p-type thermoelectric materials at room temperature to replace (Bi,Sb)<small><sub>2</sub></small>Te<small><sub>3</sub></small>, that the addition of inherently soft organic compounds can easily lower its sound velocity, leading to an obvious reduction in lattice thermal conductivity. Despite a simultaneous reduction of the power factor, the overall thermoelectric quality factor <em>B</em> is enhanced, enabling softened MgAgSb by C<small><sub>18</sub></small>H<small><sub>36</sub></small>O<small><sub>2</sub></small> addition to achieve a figure of merit <em>zT</em> value of ∼0.88 at 300 K and a peak <em>zT</em> value of ∼1.30. Consequently, an impressive average <em>zT</em> of ∼1.17 over a wide temperature range has been realized. Moreover, this high-performance MgAgSb is verified to be highly repeatable and stable. With this MgAgSb, a decent conversion efficiency of 8.6% for a single thermoelectric leg and ∼7% for a two-pair module have been achieved under a temperature difference of ∼276 K, indicating its great potential for low-grade heat harvesting. This work will not only advance MgAgSb for low-grade power generation, but also inspire the development of high-performance thermoelectrics with global softening in the future.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 22","pages":" 8810-8819"},"PeriodicalIF":32.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03521f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun
{"title":"Gradient fluoride, Zn-salt-rich hydrophobic interphase enabled by Zn-philic, H2O-phobic, anion-philic polymer 'skin' for anode-free solid Zn battery","authors":"Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun","doi":"10.1039/d4ee01978d","DOIUrl":"https://doi.org/10.1039/d4ee01978d","url":null,"abstract":"Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this \"skin\" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Zhou, Jinze Wang, Ling Lv, Ruhong Li, Long Chen, Shuoqing Zhang, Haikuo Zhang, Baochen Ma, Jiajie Huang, Bing Wu, Lixin Chen, Tao Deng, Xiulin Fan
{"title":"Anion-π Interaction and Solvent Dehydrogenation Control Enable High-Voltage Lithium-ion Batteries","authors":"Tao Zhou, Jinze Wang, Ling Lv, Ruhong Li, Long Chen, Shuoqing Zhang, Haikuo Zhang, Baochen Ma, Jiajie Huang, Bing Wu, Lixin Chen, Tao Deng, Xiulin Fan","doi":"10.1039/d4ee03027c","DOIUrl":"https://doi.org/10.1039/d4ee03027c","url":null,"abstract":"Extending the charging cutoff voltage of lithium cobalt oxide (LCO) cathode is an effective strategy to enhance energy density of lithium-ion batteries (LIBs), while the formation of poor cathode electrolyte interphase (CEI) has limited its widespread application. Various electrolyte additives, particularly nitrile compounds, have shown promise in addressing these interfacial issues, though the fundamental design principles remain unclear. Herein, we introduce an interfacial leverage mechanism utilizing nitriles adsorbed on LCO surface to fine-tune the CEI composition. A nitrile additive's suitability for high-voltage LCO is determined by the repulsive interaction with the solvent (<em>E</em><small><sub>sol</sub></small>) and the attractive interaction with the anion (<em>E</em><small><sub>anion</sub></small>). The former inhibits solvent decomposition, while the latter facilitates the anion decomposition during CEI construction. These interactions can be tailored through the functional design of nitrile compounds, as demonstrated using 3,5-bis(trifluoromethyl)benzonitrile (BFBN) in a commercial carbonate electrolyte. The BFBN molecules adsorb onto the LCO surface through coordination between cyano groups (-CN) and cobalt (Co) atoms. Exhibiting repulsive interactions with the solvent and attractive interactions with the anion through anion-π interaction, BFBN suppresses carbonate solvent dehydrogenation while promoting PF<small><sub>6</sub></small><small><sup>-</sup></small> anions decomposition to form an inorganic-rich CEI. A 1 wt.% addition of BFBN enables 4.55 V-graphite||LCO pouch cells to achieve over 550 cycles at 25 °C and more than 145 cycles at 45 °C, significantly surpassing the lifespan of around 110 and 50 cycles observed in the baseline electrolyte. This work provides new insights into the design of high-voltage electrolyte additives for high-energy-density LIBs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"124 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinyu Guo, Matthew J. Liu, Chloe Laguna, Dean M. Miller, Kindle S. Williams, Brandon D. Clark, Carolina Muñoz, Sarah J. Blair, Adam C. Nielander, Thomas F. Jaramillo and William A. Tarpeh
{"title":"Electrodialysis and nitrate reduction (EDNR) to enable distributed ammonia manufacturing from wastewaters†","authors":"Jinyu Guo, Matthew J. Liu, Chloe Laguna, Dean M. Miller, Kindle S. Williams, Brandon D. Clark, Carolina Muñoz, Sarah J. Blair, Adam C. Nielander, Thomas F. Jaramillo and William A. Tarpeh","doi":"10.1039/D4EE03002H","DOIUrl":"10.1039/D4EE03002H","url":null,"abstract":"<p >Underutilized wastewaters containing dilute levels of reactive nitrogen (Nr) can help rebalance the nitrogen cycle. This study describes electrodialysis and nitrate reduction (EDNR), a reactive electrochemical separation architecture that combines catalysis and separations to remediate nitrate and ammonium-polluted wastewaters while recovering ammonia. By engineering operating parameters (<em>e.g.</em>, background electrolyte, applied potential, electrolyte flow rate), we achieved high recovery and conversion of Nr in both simulated and real wastewaters. The EDNR process demonstrated long-term robustness and up-concentration that recovered >100 mM ammonium fertilizer solution from agricultural runoff that contained 8.2 mM Nr. EDNR is the first reported process to our knowledge that remediates dilute real wastewater and recovers ammonia from multiple Nr pollutants, with an energy consumption (245 MJ per kg NH<small><sub>3</sub></small>–N in simulated wastewater, 920 MJ per kg NH<small><sub>3</sub></small>–N in agricultural runoff) on par with the state-of-the-art. Demonstrated first at proof-of-concept and engineered to technology readiness level (TRL) 4–5, EDNR shows great promise for distributed wastewater treatment and sustainable ammonia manufacturing.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 22","pages":" 8787-8800"},"PeriodicalIF":32.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03002h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas Mühlbauer, Dominik Keiner and Christian Breyer
{"title":"Techno-economic insights and deployment prospects of permanent carbon dioxide sequestration in solid carbonates†","authors":"Andreas Mühlbauer, Dominik Keiner and Christian Breyer","doi":"10.1039/D4EE03166K","DOIUrl":"10.1039/D4EE03166K","url":null,"abstract":"<p >While a rapid defossilisation of the energy-industry system is at the highest priority for climate change mitigation, additional post-fossil carbon dioxide removal (CDR) for net-negative emissions will likely be necessary to ensure a safe future. An in-depth techno-economic analysis of differentiated sequestration options for carbon dioxide (CO<small><sub>2</sub></small>) in solid carbonates is not yet available, as direct air capture-based mineralisation is usually aggregated in direct air capture and carbon sequestration. This research gap is closed by studying mineralisation as a key CDR option to sequester atmospheric CO<small><sub>2</sub></small> permanently, based on available literature. The most frequently discussed routes for mineralisation, <em>i.e.</em>, <em>in situ</em>, <em>ex situ</em> mineralisation, and enhanced rock weathering, are examined. The deployment potentials of these options are determined globally for nine major regions. Results indicate that costs for all mineralisation options can be kept below 100 € per tCO<small><sub>2</sub></small> from 2050. From 2030 onwards, <em>in situ</em> mineralisation, with low energy-intensity, can be realised at cost of ≤131 € per tCO<small><sub>2</sub></small>, <em>ex situ</em> mineralisation at ≤189 € per tCO<small><sub>2</sub></small>, and enhanced weathering at ≤88 € per tCO<small><sub>2</sub></small>. Final energy demand for CO<small><sub>2</sub></small> sequestration <em>via in situ</em> mineralisation is ≤1.8 MWh per tCO<small><sub>2</sub></small>, <em>via ex situ</em> mineralisation ≤3.7 MWh per tCO<small><sub>2</sub></small>, and <em>via</em> enhanced weathering ≤1.1 MWh per tCO<small><sub>2</sub></small> from 2030. Large-scale deployment of mineralisation options supporting 60% of projected CDR demand is assessed to require up to 0.06% and 0.21% in global gross domestic product and up to 2.5% and 8.6% additional primary energy demand in 2070 for a 1.5 °C and 1.0 °C climate target, respectively. Implications, permanence of sequestration, and limitations are discussed, and a research outlook is provided.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 22","pages":" 8756-8775"},"PeriodicalIF":32.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03166k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoelectrochemical nitrate denitrification towards acidic ammonia synthesis on copper-decorated black silicon","authors":"Yuchan Li, Qi Zhang, Huan Dai, Dong He, Zunjian Ke, Xiangheng Xiao","doi":"10.1039/d4ee04438j","DOIUrl":"https://doi.org/10.1039/d4ee04438j","url":null,"abstract":"Nitrate electroreduction to ammonia has broad prospects as a complementary route to the energy-intensive Haber-Bosch industry. Currently, most electrocatalytic NO3−-to-NH3 transformations are achieved in alkaline electrolyte, which not only requires a large power supply but also poses additional challenges for accurate quantitation and large-scale separation of NH3. Herein, the silicon nanowire (black silicon) uniformly modified with Cu nanoparticles (Cu-Si NWs) is designed for photoelectrochemical nitrate reduction (PEC NO3RR) in strong acid electrolyte. Under AM 1.5 G illumination, the Cu-Si NWs achieves a remarkably positive onset potential of 0.3 V vs. RHE and an impressive saturated photocurrent density of −34.29 mA cm−2 in 0.5 M H2SO4. More importantly, the Faradaic efficiency of ammonium (NH4+) and corresponding solar-to-NH4+ efficiency reach up to 97.03% and 51.07%, respectively. Mechanistic investigations uncover the proper Schottky contact in Cu/Si interfaces facilitates charge transfer effectively, contributing to the low onset potential and high photocurrent density. In-situ experiments and theoretical analysis have further confirmed that the incorporation of Cu effectively accelerates the activation and protonation steps of NO3–. Moreover, the PEC system exhibits excellent stability and great potential in environmental remediation in simulated industrial wastewater treatment. This work introduces a strategy for fabricating highly efficient PEC devices for diminishing nitrate contaminant in strong acid media.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"11 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinfeng Liu, Shiwen Du, Wenjun Fan, Qinglin Li, Qi Yang, Lin Luo, Jiangnan Li, Fuxiang Zhang
{"title":"Vertically aligned hematite nanosheets with (110) facets controllably exposed for ammonia synthesis with high faraday efficiency beyond 2.5 A cm-2","authors":"Jinfeng Liu, Shiwen Du, Wenjun Fan, Qinglin Li, Qi Yang, Lin Luo, Jiangnan Li, Fuxiang Zhang","doi":"10.1039/d4ee03987d","DOIUrl":"https://doi.org/10.1039/d4ee03987d","url":null,"abstract":"Hematite has been widely investigated for promising (photo)electrocatalysis due to its good robustness and abundant element content in earth, but its application in electrochemical synthesis of ammonia has been still plagued by unsatisfactory Faraday efficiency at ampere-scale current density. Herein we prepared a vertically aligned hematite nanosheet (denoted as Fe2O3-NS) arrays with a high-aspect-ratio (110) crystal facet exposed by one simple in situ electrochemical reconstruction strategy, which delivers unprecedentedly efficient ammonia yield of 189.05 mg h-1 cm-2 companying with Faradaic efficiency of ca. 95% at the current density of exceeding 2.5 A cm-2, outperforming the state-of-the-art Fe-based electrocatalysts. It is experimentally and theoretically revealed that the exposed (110) crystal plane of Fe2O3-NS is favorable for the adsorption and activation of intermediate species during the electrocatalysis, and its vertically aligned nanosheet arrays provide abundant active sites and favorable charge transfer channels. The as-obtained hematite nanosheet arrays were finally employed as cathode of one Zn-nitrate battery to deliver an outstanding discharge power density of 36.2 mW cm-2.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"9 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}