So Jeong Park, Changhoon Yu, Kyu In Shim, Geon Pyo Hong, Sunwu Song, Jae Hyun Park, Sun Kyung Hwang, Yeo Jin Choi, Jeong Woo Han, Min Sang Kwon, Ik Jae Park and Jin Young Kim
{"title":"Tailored self-assembled monolayer molecules for perovskite/PERC tandem solar cells with efficiencies over 30%","authors":"So Jeong Park, Changhoon Yu, Kyu In Shim, Geon Pyo Hong, Sunwu Song, Jae Hyun Park, Sun Kyung Hwang, Yeo Jin Choi, Jeong Woo Han, Min Sang Kwon, Ik Jae Park and Jin Young Kim","doi":"10.1039/D5EE02650D","DOIUrl":null,"url":null,"abstract":"<p >The commercialization of perovskite/Si tandem solar cells requires low product costs, achievable through high efficiency and inexpensive components. Here, we report a highly efficient monolithic perovskite tandem device utilizing a commercial passivated emitter and rear cell (PERC), with the aid of a fluorine-substituted carbazole-based self-assembled monolayer (SAM). Modified SAM molecules enhanced charge transfer due to the larger dipole moments resulting from asymmetric charge distribution. The negative adsorption energy and well-ordered molecules alleviated residual stress in perovskite films and reduced trap density at the interfaces, leading to suppressed non-radiative recombination and improved open-circuit voltage of the perovskite top cell. As a result, the best single-junction perovskite cell exhibits a certified efficiency of 20.14%, with a good operational stability maintaining 90% of its initial efficiency after 1500 hours. The best perovskite/Si tandem cell, fabricated with cost-effective PERC bottom cells, exhibits a conversion efficiency of 30.05%, which is the highest among PERC-based perovskite tandem solar cells.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 20","pages":" 9105-9113"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02650d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The commercialization of perovskite/Si tandem solar cells requires low product costs, achievable through high efficiency and inexpensive components. Here, we report a highly efficient monolithic perovskite tandem device utilizing a commercial passivated emitter and rear cell (PERC), with the aid of a fluorine-substituted carbazole-based self-assembled monolayer (SAM). Modified SAM molecules enhanced charge transfer due to the larger dipole moments resulting from asymmetric charge distribution. The negative adsorption energy and well-ordered molecules alleviated residual stress in perovskite films and reduced trap density at the interfaces, leading to suppressed non-radiative recombination and improved open-circuit voltage of the perovskite top cell. As a result, the best single-junction perovskite cell exhibits a certified efficiency of 20.14%, with a good operational stability maintaining 90% of its initial efficiency after 1500 hours. The best perovskite/Si tandem cell, fabricated with cost-effective PERC bottom cells, exhibits a conversion efficiency of 30.05%, which is the highest among PERC-based perovskite tandem solar cells.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).