用于高放电深度和能量密度2ah级锌金属电池的mbene基胶体电解质

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongyu Qin, Ao Liu, Kefeng Ouyang, Sheng Chen, Shubing Wei and Yan Huang
{"title":"用于高放电深度和能量密度2ah级锌金属电池的mbene基胶体电解质","authors":"Hongyu Qin, Ao Liu, Kefeng Ouyang, Sheng Chen, Shubing Wei and Yan Huang","doi":"10.1039/D5EE02723C","DOIUrl":null,"url":null,"abstract":"<p >Sluggish diffusion rates and exceptionally uneven distribution of Zn<small><sup>2+</sup></small> at the electrode/electrolyte interface under high depth-of-discharge (DOD) severely limit the advancement of high-energy-density Zn metal batteries (ZMBs). Herein, a hydrated eutectic colloidal electrolyte based on a two-dimensional transition metal boride, Mo<small><sub>4/3</sub></small>B<small><sub>2</sub></small>T<small><sub>2</sub></small> MBene (where T represents –OH and –F), is developed. The good Zn<small><sup>2+</sup></small> affinity of terminal groups of MBene promotes ion diffusion, thus resulting in a high Zn<small><sup>2+</sup></small> transference number of 0.89, which significantly enhances and balances the ion concentration on the Zn anode surface, improving the Zn deposition dynamics. As a result, the Zn anode with an ultrathin thickness of 10 μm demonstrates 900 h of cyclability under an ultrahigh DOD of 90%. Additionally, the enlarged Zn‖Zn pouch cell with a scale of 10 × 10 cm<small><sup>2</sup></small> shows a stable cyclic performance for 500 h at 60% DOD, meanwhile the constructed 2 Ah four-electron Zn‖I<small><sub>2</sub></small> pouch battery delivers an energy density of 158.5 Wh L<small><sup>−1</sup></small> under the same conditions. This work provides new guidelines for the development of high-DOD metal anodes and high-energy-density metal batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 19","pages":" 8941-8951"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An MBene-based colloidal electrolyte for high depth-of-discharge and energy-density 2 Ah-scale Zn metal batteries\",\"authors\":\"Hongyu Qin, Ao Liu, Kefeng Ouyang, Sheng Chen, Shubing Wei and Yan Huang\",\"doi\":\"10.1039/D5EE02723C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sluggish diffusion rates and exceptionally uneven distribution of Zn<small><sup>2+</sup></small> at the electrode/electrolyte interface under high depth-of-discharge (DOD) severely limit the advancement of high-energy-density Zn metal batteries (ZMBs). Herein, a hydrated eutectic colloidal electrolyte based on a two-dimensional transition metal boride, Mo<small><sub>4/3</sub></small>B<small><sub>2</sub></small>T<small><sub>2</sub></small> MBene (where T represents –OH and –F), is developed. The good Zn<small><sup>2+</sup></small> affinity of terminal groups of MBene promotes ion diffusion, thus resulting in a high Zn<small><sup>2+</sup></small> transference number of 0.89, which significantly enhances and balances the ion concentration on the Zn anode surface, improving the Zn deposition dynamics. As a result, the Zn anode with an ultrathin thickness of 10 μm demonstrates 900 h of cyclability under an ultrahigh DOD of 90%. Additionally, the enlarged Zn‖Zn pouch cell with a scale of 10 × 10 cm<small><sup>2</sup></small> shows a stable cyclic performance for 500 h at 60% DOD, meanwhile the constructed 2 Ah four-electron Zn‖I<small><sub>2</sub></small> pouch battery delivers an energy density of 158.5 Wh L<small><sup>−1</sup></small> under the same conditions. This work provides new guidelines for the development of high-DOD metal anodes and high-energy-density metal batteries.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 19\",\"pages\":\" 8941-8951\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02723c\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02723c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高放电深度下Zn2+在电极/电解质界面的扩散速度缓慢和分布异常不均匀严重限制了高能量密度锌金属电池(zmb)的发展。本文制备了一种基于二维过渡金属硼化物Mo4/3B2T2 MBene(其中T代表-OH和-F)的水合共晶胶体电解质。MBene端基良好的Zn 2⁺亲和性促进了离子的扩散,从而实现了0.91的高Zn 2⁺转移数,显著增强和平衡了Zn阳极表面的离子浓度,改善了Zn沉积动力学。结果表明,超薄厚度为10 μm的Zn阳极在90%的超高DOD下可循环900 h。此外,尺寸为10×10 cm2的放大Zn b| |袋状电池在60% DOD下循环性能稳定500 h,而构建的2 Ah四电子Zn b| |I2袋状电池在相同条件下的能量密度为158.5 Wh L−1。该工作为高dod金属阳极和高能量密度金属电池的发展提供了新的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An MBene-based colloidal electrolyte for high depth-of-discharge and energy-density 2 Ah-scale Zn metal batteries

An MBene-based colloidal electrolyte for high depth-of-discharge and energy-density 2 Ah-scale Zn metal batteries

Sluggish diffusion rates and exceptionally uneven distribution of Zn2+ at the electrode/electrolyte interface under high depth-of-discharge (DOD) severely limit the advancement of high-energy-density Zn metal batteries (ZMBs). Herein, a hydrated eutectic colloidal electrolyte based on a two-dimensional transition metal boride, Mo4/3B2T2 MBene (where T represents –OH and –F), is developed. The good Zn2+ affinity of terminal groups of MBene promotes ion diffusion, thus resulting in a high Zn2+ transference number of 0.89, which significantly enhances and balances the ion concentration on the Zn anode surface, improving the Zn deposition dynamics. As a result, the Zn anode with an ultrathin thickness of 10 μm demonstrates 900 h of cyclability under an ultrahigh DOD of 90%. Additionally, the enlarged Zn‖Zn pouch cell with a scale of 10 × 10 cm2 shows a stable cyclic performance for 500 h at 60% DOD, meanwhile the constructed 2 Ah four-electron Zn‖I2 pouch battery delivers an energy density of 158.5 Wh L−1 under the same conditions. This work provides new guidelines for the development of high-DOD metal anodes and high-energy-density metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信