{"title":"Inside Back Cover: Cornea-SELEX for aptamers targeting the surface of eyes and liposomal drug delivery (EXP2 4/2024)","authors":"Ka-Ying Wong, Yibo Liu, Man-Sau Wong, Juewen Liu","doi":"10.1002/EXP.20240403","DOIUrl":"https://doi.org/10.1002/EXP.20240403","url":null,"abstract":"<p>Via the tissue-SELEX method, a few cornea-targeting aptamers were isolated, facilitating the efficient delivery of cyclosporine A encapsulated in liposomes for both in vivo and in vitro management of dry eye disease. This approach ensures prolonged drug retention on the corneal surface, establishing a general platform for ocular drug delivery.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Qian, Shu Gao, Zhaoning Jiang, Qihang Ding, Zhen Cheng
{"title":"Inside Front Cover: Recent advances in mitochondria-targeting theranostic agents (EXP2 4/2024)","authors":"Kun Qian, Shu Gao, Zhaoning Jiang, Qihang Ding, Zhen Cheng","doi":"10.1002/EXP.20240402","DOIUrl":"https://doi.org/10.1002/EXP.20240402","url":null,"abstract":"<p>Mitochondria-targeting theranostic agents combine diagnostic imaging and therapeutic functions, and benefiting from the efficiency of mitochondrial targeting strategies, they could optimize the treatment process and track the therapeutic progresses of multiple mitochondria-related diseases. Cheng et al. reviewed the research progress in this field, summarizing design strategies and biomedical applications, and emphasizing the importance and prospects for precision medicine.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Man Li, Lisen Lu, Qungen Xiao, Ali Abdi Maalim, Bin Nie, Yanchao Liu, Ulf D. Kahlert, Kai Shu, Ting Lei, Mingxin Zhu
{"title":"Bioengineer mesenchymal stem cell for treatment of glioma by IL-12 mediated microenvironment reprogramming and nCD47-SLAMF7 mediated phagocytosis regulation of macrophages","authors":"Man Li, Lisen Lu, Qungen Xiao, Ali Abdi Maalim, Bin Nie, Yanchao Liu, Ulf D. Kahlert, Kai Shu, Ting Lei, Mingxin Zhu","doi":"10.1002/EXP.20240027","DOIUrl":"https://doi.org/10.1002/EXP.20240027","url":null,"abstract":"<p>High expression of cellular self-activated immunosuppressive molecules and extensive infiltration of suppressive immune cells in the tumor microenvironment are the main factors contributing to glioma's resistance to immunotherapy. Nonetheless, technology to modify the expression of glioma cellular self-molecules through gene editing requires further development. This project advances cell therapy strategies to reverse the immunosuppressive microenvironment of glioma (TIME). Bone marrow-derived mesenchymal stem cells (MSCs) are engineered to express bioactive proteins and demonstrate tumor-homing characteristics upon activation by TGF-β. These MSCs are designed to secrete the anti-tumor immune cytokine IL-12 and the nCD47-SLAMF7 fusion protein, which regulates T-cell activity and macrophage phagocytosis. The engineered MSCs are then injected in situ into the glioma site, circumventing the blood-brain barrier to deliver high local concentrations of bioactive proteins. This approach aims to enhance the M1 polarization of infiltrating macrophages, stimulate macrophage-mediated tumor cell phagocytosis, activate antigen-presenting cells, and promote effector CD8<sup>+</sup> T cell infiltration, effectively controlling glioma. Additionally, the engineered MSCs may serve as a universal treatment for other tumors that express TGF-β at high levels. This study proposes a novel treatment strategy for the clinical management of glioma patients.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontispiece: Advances in the treatment of atherosclerosis with ligand-modified nanocarriers (EXP2 3/2024)","authors":"Xiujiao Deng, Jinghao Wang, Shanshan Yu, Suiyi Tan, Tingting Yu, Qiaxin Xu, Nenghua Chen, Siqi Zhang, Ming-Rong Zhang, Kuan Hu, Zeyu Xiao","doi":"10.1002/EXP.20240303","DOIUrl":"https://doi.org/10.1002/EXP.20240303","url":null,"abstract":"<p>The cover depicts the potential of surface-modified nanoparticles in treating atherosclerosis by targeting over-expressed receptors. It highlights advances in ligand-modified nanoparticle systems for precise molecular-level treatment and explores the challenges and future prospects, aiming to inspire novel designs of targeted nanomedicines for atherosclerosis treatment.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front Cover: Dichroic switching of core–shell plasmonic nanoparticles on reflective surfaces (EXP2 3/2024)","authors":"Tian Liang, Zhiwei Li, Yaocai Bai, Yadong Yin","doi":"10.1002/EXP.20240301","DOIUrl":"https://doi.org/10.1002/EXP.20240301","url":null,"abstract":"<p>Unique dichroic effects and high-contrast color-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. The cover illustrates a dichroic film of core-shell plasmonic nanospheres displaying varying colors at different viewing angles. Cover design is generated with the assistance of AI technology.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yumei Que, Jiaxin Shi, Zhaowenbin Zhang, Lu Sun, Hairu Li, Xionghai Qin, Zhen Zeng, Xiao Yang, Yanxin Chen, Chong Liu, Chang Liu, Shijie Sun, Qishu Jin, Yanxin Zhang, Xin Li, Ming Lei, Chen Yang, Hai Tian, Jiawei Tian, Jiang Chang
{"title":"Back Cover: Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling (EXP2 3/2024)","authors":"Yumei Que, Jiaxin Shi, Zhaowenbin Zhang, Lu Sun, Hairu Li, Xionghai Qin, Zhen Zeng, Xiao Yang, Yanxin Chen, Chong Liu, Chang Liu, Shijie Sun, Qishu Jin, Yanxin Zhang, Xin Li, Ming Lei, Chen Yang, Hai Tian, Jiawei Tian, Jiang Chang","doi":"10.1002/EXP.20240302","DOIUrl":"https://doi.org/10.1002/EXP.20240302","url":null,"abstract":"<p>Ion cocktail consisting of silicate, strontium and copper ions significantly reduces the deteriorative electrical and structural remodeling after myocardial infarction by stimulating angiogenesis of endothelial cells and M2 polarization of macrophages, and inhibiting cardiomyocyte apoptosis under hypoxia/ischemic condition. This ion cocktail therapy reveals a new strategy to effectively treat myocardial infarction with clinical translation potential.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baiyan Sui, Tingting Ding, Xingyi Wan, Yuxiao Chen, Xiaodi Zhang, Yuanbo Cui, Jie Pan, Linlin Li, Xin Liu
{"title":"Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages","authors":"Baiyan Sui, Tingting Ding, Xingyi Wan, Yuxiao Chen, Xiaodi Zhang, Yuanbo Cui, Jie Pan, Linlin Li, Xin Liu","doi":"10.1002/EXP.20230149","DOIUrl":"10.1002/EXP.20230149","url":null,"abstract":"<p>Immunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO<sub>3</sub> nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming. The piezoelectric stimulation reprograms macrophages towards the M2 phenotype, which subsequently induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RNA sequencing analysis reveals that piezoelectricity-modulated macrophage M2 polarization is closely associated with metabolic reprogramming, including increased amino acid biosynthesis and fatty acid oxidation. The composite hydrogel with excellent biocompatibility exhibits immunomodulatory and osteoinductive activities. In a rat model of alveolar bone defects, the piezoelectric hydrogel effectively promotes endogenous bone regeneration at the load-bearing sites. The piezoelectric-driven osteoimmunomodulation proposed in this study not only broadens understanding of the mechanism underlying piezoelectric biomaterials for tissue regeneration but also provides new insights into the design and development of next-generation immunomodulatory biomaterials.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Bai, Yueyang Deng, Long Li, Ming Lv, Jamoliddin Razzokov, Qingnan Xu, Zhen Xu, Zhaowei Chen, Guojun Chen, Zhitong Chen
{"title":"Advancements and challenges in brain cancer therapeutics","authors":"Fan Bai, Yueyang Deng, Long Li, Ming Lv, Jamoliddin Razzokov, Qingnan Xu, Zhen Xu, Zhaowei Chen, Guojun Chen, Zhitong Chen","doi":"10.1002/EXP.20230177","DOIUrl":"10.1002/EXP.20230177","url":null,"abstract":"<p>Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140970950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongzhi Chen, Xin Guo, Xuening Sun, Xiang Feng, Kailong Chen, Jinfeng Zhang, Zece Zhu, Xiaofang Zhang, Xin Liu, Min Liu, Li Li, Weilin Xu
{"title":"High-yield upcycling of feather wastes into solid-state ultra-long phosphorescence carbon dots for advanced anticounterfeiting and information encryption","authors":"Dongzhi Chen, Xin Guo, Xuening Sun, Xiang Feng, Kailong Chen, Jinfeng Zhang, Zece Zhu, Xiaofang Zhang, Xin Liu, Min Liu, Li Li, Weilin Xu","doi":"10.1002/EXP.20230166","DOIUrl":"10.1002/EXP.20230166","url":null,"abstract":"<p>Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.50 s is realized in the CDs synthesized by one-pot hydrothermal treatment of duck feather waste powder. To further enhance RTP lifetime, hydrogen bonding is introduced by employing polyols like polyvinyl alcohol (PVA) and phytic acid (PA), and a bimodal luminescent CDs/PVA/PA ink is exploited by mixing the CDs and polyols. Astonishingly, the CDs/PVA/PA ink screen-printed onto cellulosic substrates exhibits unprecedented green RTP with average lifetime of up to 1.97 s, and the afterglow lasts for more than 14 s after removing UV lamp. Such improvement on RTP is proposed to the populated excited triplet excitons stabilized by rigid chains. Furthermore, the CDs/PVA/PA ink demonstrates excellent potential in anticounterfeiting and information encryption. To the best of the authors' knowledge, this work is the first successful attempt to fabricate matrix-free ultra-long RTP CDs by reclamation of the feather wastes for environmental sustainability.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxue Li, Wei Wang, Qiuxia Gao, Shanshan Lai, Yan Liu, Sitong Zhou, Yan Yan, Jie Zhang, Huanhuan Wang, Jiamei Wang, Yi Feng, Ronghua Yang, Jianyu Su, Bin Li, Yuhui Liao
{"title":"Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing","authors":"Xiaoxue Li, Wei Wang, Qiuxia Gao, Shanshan Lai, Yan Liu, Sitong Zhou, Yan Yan, Jie Zhang, Huanhuan Wang, Jiamei Wang, Yi Feng, Ronghua Yang, Jianyu Su, Bin Li, Yuhui Liao","doi":"10.1002/EXP.20230113","DOIUrl":"10.1002/EXP.20230113","url":null,"abstract":"<p>Infected burn wounds are characterized by persistent drug-resistant bacterial infection coupled with an inflammatory response, impeding the wound-healing process. In this study, an intelligent nanoparticle system (CCM+TTD@ZIF-8 NPs) was prepared using curcumin (CCM), an aggregation-induced emission luminogens (TTD), and ZIF-8 for infection-induced wound healing. The CCM+TTD@ZIF-8 NPs showed multiple functions, including bacteria targeting, fluorescence imaging and pH response-guided photodynamic therapy (PDT), and anti-inflammatory. The positive charges of ZIF-8 NPs allowed the targeting of drug-resistant bacteria in infected wounds, thereby realizing fluorescence imaging of bacteria by emitting red fluorescence at the infected site upon blue light irradiation. The pH-responsive characteristics of the CCM+TTD@ZIF-8 NPs also enabled controllable CCM release onto the infected wound site, thereby promoting the specific accumulation of ROS at the infected site, with outstanding bactericidal efficacy against drug-resistant <i>Staphylococcus aureus (S. aureus)</i> and <i>Pseudomonas aeruginosa (P. aeruginosa)</i> strains in vitro/in vivo. Additionally, due to the excellent bactericidal effect and anti-inflammatory properties of CCM+TTD@ZIF-8 NPs combined with blue light irradiation, the regeneration of epidermal tissue, angiogenesis, and collagen deposition was achieved, accelerating the healing process of infected burn wounds. Therefore, this CCM+TTD@ZIF-8 NPs with multifunctional properties provides great potential for infected burn wound healing.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140684823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}