Energy advances最新文献

筛选
英文 中文
A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells† 无机纳米材料改性燃料电池质子交换膜研究进展[j]
IF 3.2
Energy advances Pub Date : 2024-12-09 DOI: 10.1039/D4YA00446A
Muhammad Rehman Asghar, Weiqi Zhang, Huaneng Su, Junliang Zhang, Huiyuan Liu, Lei Xing, Xiaohui Yan and Qian Xu
{"title":"A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells†","authors":"Muhammad Rehman Asghar, Weiqi Zhang, Huaneng Su, Junliang Zhang, Huiyuan Liu, Lei Xing, Xiaohui Yan and Qian Xu","doi":"10.1039/D4YA00446A","DOIUrl":"https://doi.org/10.1039/D4YA00446A","url":null,"abstract":"<p >This review gives an overview of the application of inorganic nanoparticles in the proton exchange membrane (PEM) of direct methanol fuel cells (DMFCs). The effects of the polymer membrane's physical and chemical characteristics after adding nanoparticles are covered. The article also covers how composite membranes can replace expensive, high-methanol-permeable, low chemically stable, and poor-conductive Nafion membranes at high temperatures. The different types of nanomaterials including solid, hollow, one-dimensional-(1D), two-dimensional-(2D) and three-dimensional-(3D) nanomaterials including clay-based composite membranes are discussed. Along with different types of nanoparticle composite membranes, different methods of making membranes such as dip coating, composite membranes and non-woven mats are also included in the article. The research shows that direct inclusion of the nanoparticles in the polymer as well as solution gel techniques require a precise ratio of the polymer and particles, blending time and a controlled drying temperature. The strong interactions of inorganic nanoparticles with polymers not only tune the pore structure of the proton exchange membrane for promoting Grotthuss and vehicular mechanisms but also create a link to hydrophilic functional groups that promote the further refining of these nanoparticles. The tortuous and non-swelled paths created with the inclusion of nanoparticles in the membrane minimize the methanol permeability while maintaining high proton conductivity. This paper also discusses the advancements in inorganic nanoparticle-modified membranes, their application and future improvements for their better application in the membrane of DMFCs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 185-223"},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00446a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning approach for estimating supercapacitor performance of graphene oxide nano-ring based electrode materials† 一种估计氧化石墨烯纳米环电极材料超级电容器性能的机器学习方法
IF 3.2
Energy advances Pub Date : 2024-12-05 DOI: 10.1039/D4YA00577E
Gaurav Kumar Yogesh, Debabrata Nandi, Rungsima Yeetsorn, Waritnan Wanchan, Chandni Devi, Ravi Pratap Singh, Aditya Vasistha, Mukesh Kumar, Pankaj Koinkar and Kamlesh Yadav
{"title":"A machine learning approach for estimating supercapacitor performance of graphene oxide nano-ring based electrode materials†","authors":"Gaurav Kumar Yogesh, Debabrata Nandi, Rungsima Yeetsorn, Waritnan Wanchan, Chandni Devi, Ravi Pratap Singh, Aditya Vasistha, Mukesh Kumar, Pankaj Koinkar and Kamlesh Yadav","doi":"10.1039/D4YA00577E","DOIUrl":"https://doi.org/10.1039/D4YA00577E","url":null,"abstract":"<p >This work utilizes a novel approach leveraging the machine learning (ML) technique to predict the electrochemical supercapacitor performance of graphene oxide nano-rings (GONs) as electrode nanomaterials. Initially, the experimental procedure was carried out to synthesize GO <em>via</em> a modified Hummers method, followed by GONs preparation using the water-in-oil (W/O) emulsion technique. High-resolution transmission electron microscopy (HRTEM) analysis reveals the formation of a typical two-dimensional GO nanosheet and multilayer-GO nano-rings. The X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) analysis results show that the GONs possess similar structural and surface chemistry properties as of GO, with a slight reduction in oxygenous functionalities, enhancing the capacitive behaviours through facile electron migration at the electrode surface. The electrochemical assessment of GO and GONs samples indicates outstanding specific capacitances of 164 F g<small><sup>−1</sup></small> and 294 F g<small><sup>−1</sup></small> at 1 mV s<small><sup>−1</sup></small>, showcasing capacitive retention of up to 63% and 60% after 2500 cycles. In addition, four different machine learning models were tested to estimate the role of electrochemical parameters in determining the specific capacitance of GONs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 119-139"},"PeriodicalIF":3.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00577e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced α-phase stability of formamidinium lead iodide with addition of 5-ammonium valeric acid chloride† 5-氯化戊酸铵†的加入增强了甲脒碘化铅的α-相稳定性
IF 3.2
Energy advances Pub Date : 2024-12-03 DOI: 10.1039/D4YA00527A
Yanan Li, Abigale Bahnick, Patrick J. Lohr, Sean Raglow and Adam D. Printz
{"title":"Enhanced α-phase stability of formamidinium lead iodide with addition of 5-ammonium valeric acid chloride†","authors":"Yanan Li, Abigale Bahnick, Patrick J. Lohr, Sean Raglow and Adam D. Printz","doi":"10.1039/D4YA00527A","DOIUrl":"https://doi.org/10.1039/D4YA00527A","url":null,"abstract":"<p >Formamidinium lead iodide (FAPbI<small><sub>3</sub></small>) is a metal halide perovskite composition that exhibits improved thermal stability and a more favorable band gap compared to the archetypical methylammonium lead iodide (MAPbI<small><sub>3</sub></small>). However, the photoactive α-phase is not thermodynamically stable at operating temperatures, which is a challenge that must be overcome for the viability of FAPbI<small><sub>3</sub></small>-based photovoltaics. This study explores the use of the ammonium acid additives 5-ammonium valeric acid iodide (5-AVAI) and 5-ammonium valeric acid chloride (5-AVACl), to stabilize the α-phase of FAPbI<small><sub>3</sub></small>. While both additives stabilize the photoactive α-phase and suppress the formation of the photoinactive δ-phase, increase grain size, reduce non-radiative recombination, and improve carrier lifetimes, the addition of 5-AVACl results in superior performance. The improvements with 5-AVACl added are possibly due to its unique ability to initiate formation of the α-phase of FAPbI<small><sub>3</sub></small> prior to annealing. DFT calculations also show that the growth of moisture-stable (111) facets is more favorable with the addition of 5-AVACl. These property improvements result in a significant increase in the power conversion efficiency of solar cells, from 9.75 ± 0.61% for devices with pristine FAPbI<small><sub>3</sub></small> to 13.50 ± 0.81% for devices incorporating 1 mol% 5-AVACl.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 262-272"},"PeriodicalIF":3.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00527a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-engineering halide perovskites: towards energy harvesting, nano-plasmonic sensing and photoflexoelectric applications 纳米工程卤化物钙钛矿:面向能量收集、纳米等离子体传感和光电应用
IF 3.2
Energy advances Pub Date : 2024-11-20 DOI: 10.1039/D4YA00442F
Taame Abraha Berhe, Etsana Kiros Ashebir, Wei-Nien Su and Bing Joe Hwang
{"title":"Nano-engineering halide perovskites: towards energy harvesting, nano-plasmonic sensing and photoflexoelectric applications","authors":"Taame Abraha Berhe, Etsana Kiros Ashebir, Wei-Nien Su and Bing Joe Hwang","doi":"10.1039/D4YA00442F","DOIUrl":"https://doi.org/10.1039/D4YA00442F","url":null,"abstract":"<p >Halide perovskites can be classified as (1) organic inorganic hybrid and (2) inorganic halide perovskites. Monolithic perovskite/silicon tandem solar cells, which are based on these materials, have already demonstrated extraordinarily high performances in the field of photovoltaics, with a current efficiency of 34.6%, breaking the efficiency limit of silicon solar cells, while single-junction perovskite solar cells have achieved an efficiency of 27%. Currently, halide perovskites are successfully employed not only in photovoltaics but also in many other related potential optoelectronic applications. Therefore, the origin of their multifunctional properties, remarkable energy harvesting and emitting efficiency and the corresponding potential applications in various optoelectronic devices have become controversial issues and hot topics of academic research. In this review, the nano-engineering strategies, microscopic origins and mechanisms of halide perovskites are reviewed in detail to clarify the origin of their multifunctional properties, such as tunability, ferroelasticity, piezoelectricity, pyroelectricity and thermoelectric properties. Moreover, the coexistence of multiple properties in halide perovskites enables synergistic applications and multifunctional perspectives, such as emerging energy harvesting, conversion technologies, nano-plasmonic sensing and electromechanical applications, which are now open for the scientific community for further detailed investigations. To successfully explore this field, advanced nanometer-scale domain characterization tools are highly relevant to understand the microscopic origin of these electrical properties, which will benefit commercial enterprises and research institutions. The primary aim of this review is not only to highlight the microscopic origin but also identify the factors and issues affecting the successful understanding and presence or absence of these electrical parameters. Finally, the significant challenges in the operation of halide perovskites owing to temperature-, moisture-, light-, and air-induced material degradation and device deteriorations as well as lattice instability, nanoscale defects, surface and bulk defects are proposed to be considered for future research on this topic.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 4","pages":" 469-517"},"PeriodicalIF":3.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00442f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in noble-metal-free bifunctional oxygen electrode catalysts 无贵金属双功能氧电极催化剂的研究进展
IF 3.2
Energy advances Pub Date : 2024-11-18 DOI: 10.1039/D4YA00551A
Hengqi Liu, Rui Xiong, Shengyu Ma, Ran Wang, Zhiguo Liu, Tai Yao and Bo Song
{"title":"Recent advances in noble-metal-free bifunctional oxygen electrode catalysts","authors":"Hengqi Liu, Rui Xiong, Shengyu Ma, Ran Wang, Zhiguo Liu, Tai Yao and Bo Song","doi":"10.1039/D4YA00551A","DOIUrl":"https://doi.org/10.1039/D4YA00551A","url":null,"abstract":"<p >The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial reactions in energy storage. However, the sluggish rate of these oxidation electrode reactions and the strong dependence of these technologies on precious metal-based electrocatalysts has greatly restricted further progress. In response to this challenge, researchers have widely investigated the preparation of high-performance ORR and OER electrocatalysts using non-precious metals, reporting substantial advancements in the last ten years. This article provides a concise overview of the latest advancements in oxygen electrocatalysts that are not based on precious metals. The review focuses on the benefits and drawbacks of carbon materials, transition metal compounds, and their composite structures. Moreover, the inherent sources of activity in these materials, techniques for enhancing the density and usage of active sites, and novel design approaches and regulation methods rooted in response mechanisms are examined. Then, a statistical examination of documented bifunctional electrocatalysts is carried out to reveal the correlation between composition, structure, and performance. This report provides a comprehensive analysis of catalyst preparation, element selection, and future directions, delivering significant insights to guide future research endeavors.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 55-83"},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00551a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced graphene oxide derived from the spent graphite anodes as a sulfur host in lithium–sulfur batteries† 从废石墨阳极中提取的还原氧化石墨烯作为锂硫电池中的硫宿主
IF 3.2
Energy advances Pub Date : 2024-11-12 DOI: 10.1039/D4YA00480A
J. Priscilla Grace, Y. Kaliprasad and Surendra K. Martha
{"title":"Reduced graphene oxide derived from the spent graphite anodes as a sulfur host in lithium–sulfur batteries†","authors":"J. Priscilla Grace, Y. Kaliprasad and Surendra K. Martha","doi":"10.1039/D4YA00480A","DOIUrl":"https://doi.org/10.1039/D4YA00480A","url":null,"abstract":"<p >Lithium–sulfur batteries (LSBs) offer a distinctive advantage over traditional Li-ion batteries with a higher theoretical capacity (1675 mA h g<small><sup>−1</sup></small>) and energy density (2600 W h kg<small><sup>−1</sup></small>). This study focuses on an inexpensive graphite recycled from the spent LIBs as a promising sulfur host for developing sustainable LSBs. A recycled reduced graphene oxide–sulfur (RRGO-S) composite was cast onto a 3D-carbon fiber (CF) electrode (RRGO-S@CF). The flexible and lightweight RRGO-S@CF electrodes at 500 mA g<small><sup>−1</sup></small> delivered an initial discharge capacity of 552 mA h g<small><sup>−1</sup></small>, and there was no capacity loss in its initial five cycles, maintaining a stable capacity of 390 mA h g<small><sup>−1</sup></small> till 300 cycles with 73% capacity retention. At a higher current density of 1.675 A g<small><sup>−1</sup></small>, it delivered an improved capacity of 417 mA h g<small><sup>−1</sup></small>. The enhanced electrochemical performance was due to the favorable interaction between the RRGO and lithium polysulfides, reducing the active material loss and polysulfide dissolution. The 3D-CF and RRGO offer a conductive network and Li-ion transport with electrolyte wettability, thereby improving the sulfur utilization and overall electrochemical performance in LSBs. This approach demonstrates the construction of recycled materials from the spent LIBs as an inexpensive source to meet the growing energy demand in the practical development of LSBs.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 152-161"},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00480a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Battery electrode slurry rheology and its impact on manufacturing 电池电极浆料流变学及其对制造的影响
IF 3.2
Energy advances Pub Date : 2024-11-11 DOI: 10.1039/D4YA00380B
Carl D. Reynolds, Helen Walker, Ameir Mahgoub, Ebenezer Adebayo and Emma Kendrick
{"title":"Battery electrode slurry rheology and its impact on manufacturing","authors":"Carl D. Reynolds, Helen Walker, Ameir Mahgoub, Ebenezer Adebayo and Emma Kendrick","doi":"10.1039/D4YA00380B","DOIUrl":"https://doi.org/10.1039/D4YA00380B","url":null,"abstract":"<p >The manufacturing of battery electrodes is a critical research area driven by the increasing demand for electrification in transportation. This process involves complex stages during which advanced metrology can be used to enhance performance and minimize waste. A key metrological aspect is the rheology of the electrode slurry which can give a wealth of information about the underlying microstructure and the composite slurry materials' chemical and physical properties. Despite the importance, extensive characterization and a comprehensive understanding of the relationships between rheology, microstructure, and material properties are still lacking. This work bridges academic and industrial perspectives, evaluating current advancements in characterisation. It emphasizes the role of formulation and mixing in determining the slurry's behaviour and structural properties. The study concludes with recommendations to improve measurement techniques and interpret slurry properties, aiming to optimize the manufacturing process and enhance the performance of battery electrodes.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 84-93"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00380b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergetic effect towards high electrochemical performance in LaMnO3–Co3O4 composites 协同效应对LaMnO3-Co3O4复合材料电化学性能的影响
IF 3.2
Energy advances Pub Date : 2024-11-11 DOI: 10.1039/D4YA00548A
Alisha Dhakal, Felio A. Perez and Sanjay R. Mishra
{"title":"Synergetic effect towards high electrochemical performance in LaMnO3–Co3O4 composites","authors":"Alisha Dhakal, Felio A. Perez and Sanjay R. Mishra","doi":"10.1039/D4YA00548A","DOIUrl":"https://doi.org/10.1039/D4YA00548A","url":null,"abstract":"<p >Electrochemical energy storage devices, especially supercapacitors, require electrode materials with high specific capacitance, excellent stability, and efficient charge transfer kinetics. This study presents LaMnO<small><sub>3</sub></small>(LMO)–Co<small><sub>3</sub></small>O<small><sub>4</sub></small> composites as advanced electrode materials designed to enhance specific capacitance for electrochemical applications. The <em>x</em>LMO–(100% − <em>x</em>) Co<small><sub>3</sub></small>O<small><sub>4</sub></small> composites (with wt% <em>x</em> values of 100%, 90%, 70%, 50%, and 0%) were synthesized using an auto-combustion method followed by calcination at 900 °C. X-ray diffraction analysis confirmed the presence of the individual compounds in the intended ratios. N<small><sub>2</sub></small> adsorption/desorption measurements revealed that the LMO–Co<small><sub>3</sub></small>O<small><sub>4</sub></small> composites have a mesoporous structure with a high surface area, with the LMO–Co<small><sub>3</sub></small>O<small><sub>4</sub></small> (70%:30%) composites achieving the highest specific surface area of 6.78 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The electrochemical performance of these composites was evaluated using cyclic voltammetry, charge–discharge, and electrochemical impedance spectroscopy in a three-electrode system with a 1 M KOH electrolyte. The battery-type LMO–Co<small><sub>3</sub></small>O<small><sub>4</sub></small> (70%:30%) composites exhibited outstanding electrochemical performance, showing a specific capacitance of 1614 F g<small><sup>−1</sup></small> at a scan rate of 1 mV s<small><sup>−1</sup></small> and 660 F g<small><sup>−1</sup></small> at a current density of 0.5 A g<small><sup>−1</sup></small>, along with energy and power densities of 33 W h kg<small><sup>−1</sup></small> and 203 W kg<small><sup>−1</sup></small>, respectively. This hybridization approach leverages the strengths of each material to enhance overall electrochemical performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 162-175"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00548a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semitransparent organic and perovskite photovoltaics for agrivoltaic applications 用于农业光伏应用的半透明有机和钙钛矿光伏
IF 3.2
Energy advances Pub Date : 2024-11-08 DOI: 10.1039/D4YA00492B
Souk Y. Kim, Noura Rayes, Armen R. Kemanian, Enrique D. Gomez and Nutifafa Y. Doumon
{"title":"Semitransparent organic and perovskite photovoltaics for agrivoltaic applications","authors":"Souk Y. Kim, Noura Rayes, Armen R. Kemanian, Enrique D. Gomez and Nutifafa Y. Doumon","doi":"10.1039/D4YA00492B","DOIUrl":"https://doi.org/10.1039/D4YA00492B","url":null,"abstract":"<p >Greenhouse structures offer the ability to control the microclimate, enabling year-round crop cultivation and precision agriculture techniques. To maintain optimal crop growth conditions, substantial energy is required to heat, light, irrigate, and ventilate the interior greenhouse environment. The term Agrivoltaics is coined from integrating agricultural land management with renewable solar energy systems. Most agrivoltaic research applications have focused on studying opaque silicon photovoltaics, with limited exploration of novel semitransparent photovoltaics such as organic or perovskite devices. By incorporating semitransparent photovoltaic systems onto greenhouse rooftops, farms can partially generate electricity from solar energy while utilizing the remaining rooftop light transmission to nurture greenhouse plant growth below. This review explores the principles and properties of semitransparent organic and perovskite photovoltaic technologies and their potential benefits for greenhouse applications. Additionally, we discuss practical case studies to illustrate their integration and efficacy in agrivoltaic systems. We also address key metrics such as average visible transmittance, average photosynthetic transmittance, light utilization efficiency, power conversion efficiency, and their impact on greenhouse energy production. We conclude with an analysis of device challenges, including stability and toxicity issues, limited experimental results of semitransparent photovoltaics in current greenhouse agrivoltaics, and the prospects for integrating semitransparent organic photovoltaics and semitransparent perovskite photovoltaics into agrivoltaic systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 37-54"},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00492b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of NiMoO4/carbon nanocomposites for high-performance supercapacitors: an in situ carbon incorporation approach† 高性能超级电容器用NiMoO4/碳纳米复合材料的合理设计:原位碳掺入方法
IF 3.2
Energy advances Pub Date : 2024-11-08 DOI: 10.1039/D4YA00438H
Raji Yuvaraja, Sankar Sarathkumar, Venkatesan Gowsalya, Sorna Pandian Anitha Juliet, Selvakumar Veeralakshmi, Siva Kalaiselvam, Gunniya Hariyanandam Gunasekar and Selvan Nehru
{"title":"Rational design of NiMoO4/carbon nanocomposites for high-performance supercapacitors: an in situ carbon incorporation approach†","authors":"Raji Yuvaraja, Sankar Sarathkumar, Venkatesan Gowsalya, Sorna Pandian Anitha Juliet, Selvakumar Veeralakshmi, Siva Kalaiselvam, Gunniya Hariyanandam Gunasekar and Selvan Nehru","doi":"10.1039/D4YA00438H","DOIUrl":"https://doi.org/10.1039/D4YA00438H","url":null,"abstract":"<p >Understanding the impact of different compositions of nanocomposites synthesized <em>via in situ</em> incorporation of different ratios of carbon with metal oxides is an important factor for designing efficient electrode materials for high-performance supercapacitors. Here, a series of nanomaterials, NiMoO<small><sub>4</sub></small>, carbonaceous nanospheres (CNSs), and NiMoO<small><sub>4</sub></small>/C nanocomposites (NiMoO<small><sub>4</sub></small>/C (D<em>x</em>), where, <em>x</em> = 10, 25, 50, and 75 represents the molar ratio of dextrose (D) to Ni<small><sup>2+</sup></small>), have been synthesized <em>via</em> an <em>in situ</em> hydrothermal method. The structural and surface analysis revealed the efficient integration of NiMoO<small><sub>4</sub></small> and carbon in the NiMoO<small><sub>4</sub></small>/C (D50) nanocomposite, consisting of 71.1% NiMoO<small><sub>4</sub></small> and 28.9% carbon components. The nanocomposite features a graphitic carbon sheet-like structure embedded with NiMoO<small><sub>4</sub></small> nanorods, showing increased defects with higher carbon content and enhanced surface area with larger mesoporosity. In three-electrode supercapacitor studies for these electrode materials using 3 M KOH as the electrolyte, the NiMoO<small><sub>4</sub></small>/C (D50)-based electrode delivered superior specific capacitance (940 F g<small><sup>−1</sup></small>) at a current density of 1 A g<small><sup>−1</sup></small> compared to bare NiMoO<small><sub>4</sub></small> (520 F g<small><sup>−1</sup></small>), CNS (75 F g<small><sup>−1</sup></small>) and NiMoO<small><sub>4</sub></small>/C (D10, D25 and D75) nanocomposites (436–583 F g<small><sup>−1</sup></small>), with 71% capacity retention up to 5000 cycles. Furthermore, for the fabricated NiMoO<small><sub>4</sub></small>/C (D50)-based two-electrode supercapacitors at 1 A g<small><sup>−1</sup></small> using 3 M KOH, the symmetric configuration delivered a doubled specific capacitance (83 F g<small><sup>−1</sup></small>), while the asymmetric configuration led to a doubled performance in both energy density (14.2 W h kg<small><sup>−1</sup></small>) and power density (444 W kg<small><sup>−1</sup></small>), in comparison to each other. The enhanced supercapacitor performance of NiMoO<small><sub>4</sub></small>/C (D50) can be attributed to the synergistic effect between carbon and NiMoO<small><sub>4</sub></small> in the optimized nanocomposites, which improves the electrolyte-philicity by altering the surface composition and properties, leading to more electroactive sites and increased charge storage capacity. Thus, designing new electrode materials <em>via in situ</em> hydrothermal synthesis of different metal oxide/C nanocomposites with optimal composition and choosing different carbon source materials will deliver high-performance supercapacitors in the near future.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 94-105"},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00438h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信