Enhanced electrochemical performance by alumina-coated graphite anodes via spray coating†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-12-23 DOI:10.1039/D4YA00582A
Pin-Yi Zhao, Kwang-Leong Choy, Yongyi Song, Shudong Zhang and Rui Ma
{"title":"Enhanced electrochemical performance by alumina-coated graphite anodes via spray coating†","authors":"Pin-Yi Zhao, Kwang-Leong Choy, Yongyi Song, Shudong Zhang and Rui Ma","doi":"10.1039/D4YA00582A","DOIUrl":null,"url":null,"abstract":"<p >Lithium-ion batteries (LIBs) are essential for energising portable devices, electric cars, and energy storage systems. Graphite is a frequently utilised anode material; nonetheless, the continual formation of a solid electrolyte interface (SEI) during cycling results in capacity degradation owing to electrolyte depletion. This study tackles this issue by employing alumina coatings on graphite electrodes <em>via</em> the spray coating technique, which is cost-effective and scalable. Electrodes with different alumina concentrations (1 wt%, 4 wt%, and 7 wt%) were assessed for electrochemical performance. The 1 wt% alumina-coated electrode demonstrated enhanced cycling stability, with 94.97% capacity retention after 100 cycles, in contrast to 91.74% for the uncoated graphite. The Al<small><sub>2</sub></small>O<small><sub>3</sub></small> coating functions as a preformed SEI, diminishing electrolyte decomposition and improving the cycling performance and rate capability of electrodes, particularly at elevated C-rates. This research illustrates that using spray-coated alumina is an effective technique for enhancing the durability and performance of graphite anodes in lithium-ion batteries, with the potential for extensive applications in energy storage systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 244-248"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00582a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00582a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) are essential for energising portable devices, electric cars, and energy storage systems. Graphite is a frequently utilised anode material; nonetheless, the continual formation of a solid electrolyte interface (SEI) during cycling results in capacity degradation owing to electrolyte depletion. This study tackles this issue by employing alumina coatings on graphite electrodes via the spray coating technique, which is cost-effective and scalable. Electrodes with different alumina concentrations (1 wt%, 4 wt%, and 7 wt%) were assessed for electrochemical performance. The 1 wt% alumina-coated electrode demonstrated enhanced cycling stability, with 94.97% capacity retention after 100 cycles, in contrast to 91.74% for the uncoated graphite. The Al2O3 coating functions as a preformed SEI, diminishing electrolyte decomposition and improving the cycling performance and rate capability of electrodes, particularly at elevated C-rates. This research illustrates that using spray-coated alumina is an effective technique for enhancing the durability and performance of graphite anodes in lithium-ion batteries, with the potential for extensive applications in energy storage systems.

Abstract Image

氧化铝包覆石墨阳极通过喷涂†提高电化学性能
锂离子电池(LIBs)是为便携式设备、电动汽车和储能系统供电的关键。石墨是一种常用的阳极材料;然而,在循环过程中不断形成固体电解质界面(SEI),由于电解质耗尽导致容量下降。本研究通过喷涂技术在石墨电极上使用氧化铝涂层来解决这一问题,该技术具有成本效益和可扩展性。不同氧化铝浓度(1wt %, 4wt %和7wt %)电极的电化学性能进行了评估。1 wt%的氧化铝涂层电极显示出增强的循环稳定性,在100次循环后容量保持率为94.97%,而未涂层石墨电极的容量保持率为91.74%。Al2O3涂层作为预成型的SEI,减少了电解质的分解,提高了电极的循环性能和速率能力,特别是在高c速率下。该研究表明,使用喷涂氧化铝是提高锂离子电池石墨阳极耐久性和性能的有效技术,在储能系统中具有广泛应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信