Yanan Li, Abigale Bahnick, Patrick J. Lohr, Sean Raglow and Adam D. Printz
{"title":"Enhanced α-phase stability of formamidinium lead iodide with addition of 5-ammonium valeric acid chloride†","authors":"Yanan Li, Abigale Bahnick, Patrick J. Lohr, Sean Raglow and Adam D. Printz","doi":"10.1039/D4YA00527A","DOIUrl":null,"url":null,"abstract":"<p >Formamidinium lead iodide (FAPbI<small><sub>3</sub></small>) is a metal halide perovskite composition that exhibits improved thermal stability and a more favorable band gap compared to the archetypical methylammonium lead iodide (MAPbI<small><sub>3</sub></small>). However, the photoactive α-phase is not thermodynamically stable at operating temperatures, which is a challenge that must be overcome for the viability of FAPbI<small><sub>3</sub></small>-based photovoltaics. This study explores the use of the ammonium acid additives 5-ammonium valeric acid iodide (5-AVAI) and 5-ammonium valeric acid chloride (5-AVACl), to stabilize the α-phase of FAPbI<small><sub>3</sub></small>. While both additives stabilize the photoactive α-phase and suppress the formation of the photoinactive δ-phase, increase grain size, reduce non-radiative recombination, and improve carrier lifetimes, the addition of 5-AVACl results in superior performance. The improvements with 5-AVACl added are possibly due to its unique ability to initiate formation of the α-phase of FAPbI<small><sub>3</sub></small> prior to annealing. DFT calculations also show that the growth of moisture-stable (111) facets is more favorable with the addition of 5-AVACl. These property improvements result in a significant increase in the power conversion efficiency of solar cells, from 9.75 ± 0.61% for devices with pristine FAPbI<small><sub>3</sub></small> to 13.50 ± 0.81% for devices incorporating 1 mol% 5-AVACl.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 262-272"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00527a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00527a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Formamidinium lead iodide (FAPbI3) is a metal halide perovskite composition that exhibits improved thermal stability and a more favorable band gap compared to the archetypical methylammonium lead iodide (MAPbI3). However, the photoactive α-phase is not thermodynamically stable at operating temperatures, which is a challenge that must be overcome for the viability of FAPbI3-based photovoltaics. This study explores the use of the ammonium acid additives 5-ammonium valeric acid iodide (5-AVAI) and 5-ammonium valeric acid chloride (5-AVACl), to stabilize the α-phase of FAPbI3. While both additives stabilize the photoactive α-phase and suppress the formation of the photoinactive δ-phase, increase grain size, reduce non-radiative recombination, and improve carrier lifetimes, the addition of 5-AVACl results in superior performance. The improvements with 5-AVACl added are possibly due to its unique ability to initiate formation of the α-phase of FAPbI3 prior to annealing. DFT calculations also show that the growth of moisture-stable (111) facets is more favorable with the addition of 5-AVACl. These property improvements result in a significant increase in the power conversion efficiency of solar cells, from 9.75 ± 0.61% for devices with pristine FAPbI3 to 13.50 ± 0.81% for devices incorporating 1 mol% 5-AVACl.