Energy advances最新文献

筛选
英文 中文
Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle† 热再生循环对低品位热能收集的氧化还原对评价
IF 3.2
Energy advances Pub Date : 2024-10-14 DOI: 10.1039/D4YA00368C
José Tomás Bórquez Maldifassi, Joseph B. Russell, Jungmyung Kim, Edward Brightman, Xiangjie Chen and Dowon Bae
{"title":"Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle†","authors":"José Tomás Bórquez Maldifassi, Joseph B. Russell, Jungmyung Kim, Edward Brightman, Xiangjie Chen and Dowon Bae","doi":"10.1039/D4YA00368C","DOIUrl":"https://doi.org/10.1039/D4YA00368C","url":null,"abstract":"<p >Waste heat, particularly of low-grade (lower than 100 °C), represents a considerable amount of energy loss across different industries and areas of human development. In recent years, different ways of harvesting heat have been the focus of extensive research, with the thermally regenerative electrochemical cycle (TREC) being of particular interest due to its promising results, derived from using the temperature coefficient of electrolytes to obtain more efficient charging and discharging battery cycles. While studies have shown groundbreaking results by trial-and-error-based combinations of different redox couples, these studies have been mostly isolated from one another, possibly missing unseen potentials of unexplored redox couple combinations. Therefore, a wider view of these combinations is explored in this work to screen them for the TREC battery applications. Herein, we present a comprehensive survey of the redox couples used in the literature to highlight the untapped potential of a TREC cell. Furthermore, strategic guidelines on choosing the efficient redox couples for the TREC with engineering remarks and insights for their practical heat-to-electricity conversion applications are presented.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2877-2886"},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00368c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powering the future: Germany's Wasserstoffstrategie in the transition to climate neutrality – case study on green hydrogen for the chemical industry 为未来提供动力:德国向气候中和过渡的华沙战略——化学工业绿色氢的案例研究
IF 3.2
Energy advances Pub Date : 2024-10-14 DOI: 10.1039/D4YA00246F
Valentin Benedikt Seithümmer, Julia Valentina Lutz, Samuel Jaro Kaufmann, Haripriya Chinnaraj, Paul Rößner and Kai Peter Birke
{"title":"Powering the future: Germany's Wasserstoffstrategie in the transition to climate neutrality – case study on green hydrogen for the chemical industry","authors":"Valentin Benedikt Seithümmer, Julia Valentina Lutz, Samuel Jaro Kaufmann, Haripriya Chinnaraj, Paul Rößner and Kai Peter Birke","doi":"10.1039/D4YA00246F","DOIUrl":"https://doi.org/10.1039/D4YA00246F","url":null,"abstract":"<p >This article provides a comprehensive insight into Germany's transition to climate neutrality, bringing together the political framework of Germany's Climate Protection Act (CPA), the funding strategy of its key pillar, namely the “Wasserstoffstrategie” and the technical dimensions for non-technical stakeholders through a case study of Germany's largest current hydrogen user, the chemical industry. Increasing complexity of our modern economy and society and a lack of clarity in reporting contribute to misleading conclusions and can facilitate polarised views. To overcome that gap, we aim to draw a clear picture of these complex scientific topics and make them also accessible to non-technical stakeholders. This paper reviews Germany's climate policy, emphasizing the federal constitutional court's pivotal role. By calculating prospective GHG-reduction paths for Germany, we illuminate the gap between aspirational targets and practical strategies, emphasizing the need to translate global targets into actionable national plans. Taking the crucial, often-overlooked CO<small><sub>2</sub></small>-budget into account, potential shortcomings are revealed, even when annual emission goals are met by Germany. Shifting focus of this paper to the German hydrogen strategy, a core part of the Climate Protection Program, we reveal a strong emphasis on international collaboration. This involves a global hydrogen ramp-up and facilitation of hydrogen imports, offering trade opportunities but also introducing dependencies and potential price increases. A scale estimation case study on green hydrogen production for the German chemical industry underscores the rationale behind prioritising imports over domestic production. Calculating a demand of 7840 windmills (78.37 TW h) that require 168 000 football pitches (7000 m<small><sup>2</sup></small> per pitch) of space, it provides easy to grasp insights into the necessary actions for a climate neutral Germany. This perspective frames Germany's climate goals, the Wasserstoffstrategie, and the technical scale of implementing renewables by conducting a case study on green hydrogen. Hereby, it highlights the magnitude of the climate problem and the immense scale of solutions required for a sustainable technical transition in a clear and sound manner.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2887-2895"},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00246f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultrathin Li-doped perovskite SEI film with high Li ion flux for a fast charging lithium metal battery† 一种用于快速充电锂金属电池的具有高锂离子通量的超薄锂掺杂钙钛矿SEI薄膜
IF 3.2
Energy advances Pub Date : 2024-10-10 DOI: 10.1039/D4YA00507D
Ruliang Liu, Wenli Feng, Liangzhou Fang, Huiping Deng, Ling Lin, MinChang Chen, Jun-Xing Zhong and Wei Yin
{"title":"An ultrathin Li-doped perovskite SEI film with high Li ion flux for a fast charging lithium metal battery†","authors":"Ruliang Liu, Wenli Feng, Liangzhou Fang, Huiping Deng, Ling Lin, MinChang Chen, Jun-Xing Zhong and Wei Yin","doi":"10.1039/D4YA00507D","DOIUrl":"https://doi.org/10.1039/D4YA00507D","url":null,"abstract":"<p >Developing an artificial solid electrolyte interphase (SEI) with high Li ion flux is vital to improve the cycling stability of lithium metal batteries, especially under a high rate. In this work, a novel artificial SEI film was prepared <em>via in situ</em> deposition of a lithium-doped cesium lead chloride perovskite (Li–CsPbCl<small><sub>3</sub></small>). Benefiting from its ultra-high thickness (0.45 μm), high mechanical modulus (5.9 GPa), high lithium-ion migration number (0.57), and unique highly oriented framework, the Li–CsPbCl<small><sub>3</sub></small> SEI film could promote the rapid transport and uniform deposition of lithium ions, enhancing the stability of lithium deposition and stripping. As a result, Li/Li symmetric cells based on the Li–CsPbCl<small><sub>3</sub></small> protective film could cycle stably for 1300 hours under high current density of 10 mA cm<small><sup>−2</sup></small>. In addition, the Li/LiFePO<small><sub>4</sub></small> battery using the Li–CsPbCl<small><sub>3</sub></small> SEI film showed an impressive cycling stability with a capacity retention rate of up to 91.4% after 230 cycles at a high current rate of 3C.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2999-3006"},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00507d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of crossover on capacity fade of symmetric redox flow cells† 交叉对对称氧化还原液流电池容量衰减的影响
IF 3.2
Energy advances Pub Date : 2024-10-03 DOI: 10.1039/D4YA00407H
Thomas Y. George, Eric M. Fell, Kyumin Lee, Michael S. Emanuel and Michael J. Aziz
{"title":"Influence of crossover on capacity fade of symmetric redox flow cells†","authors":"Thomas Y. George, Eric M. Fell, Kyumin Lee, Michael S. Emanuel and Michael J. Aziz","doi":"10.1039/D4YA00407H","DOIUrl":"https://doi.org/10.1039/D4YA00407H","url":null,"abstract":"<p >Volumetrically unbalanced compositionally symmetric cell cycling with potentiostatic (CV) or galvanostatic-with-potential-hold (CCCV) protocols is a rigorous technique for evaluating the calendar lifetime of reactants for redox flow batteries. Here, we evaluate the influence of reactant crossover through the membrane on symmetric cell cycling behavior. We tested symmetric cells of anthraquinone disulfonic acid (AQDS) with Nafion membranes of varied thickness and manufacture (NR211, NR212, N115, and N117, ranging 25–183 μm). Membranes were tested both as-received and pretreated with a common procedure of soaking in water at elevated temperature and then in dilute hydrogen peroxide. We found no significant difference in capacity fade rates of symmetric cells with any of the membranes as-received, indicating a negligible influence of crossover. However, we observed increased capacity fade with increased permeability through pretreated membranes. Supported by zero-dimensional modeling and <em>operando</em> UV-vis spectrophotometry, we propose a mechanism for net crossover in AQDS symmetric cells based on a higher time-averaged concentration of quinhydrone dimers in the non-capacity limiting side (NCLS) compared to the capacity limiting side (CLS), driving net crossover of AQDS reactants out of the CLS. Further, we illustrate other hypothetical scenarios of net crossover using the zero-dimensional model. Overall, many membrane–electrolyte systems used in symmetric cell studies have sufficiently low crossover flux as to avoid the influence of crossover on capacity fade, but under conditions of higher crossover flux, complex interactions of crossover and chemical reactions may result in diverse capacity fade trajectories, the mechanisms of which may be untangled with <em>operando</em> characterization and modeling.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2910-2921"},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00407h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes† 低盐比对 PEO-LiTFSI/LLZTO 复合电解质电化学性能和压缩模量的竞争效应†。
IF 3.2
Energy advances Pub Date : 2024-10-03 DOI: 10.1039/D4YA00467A
Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh
{"title":"Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes†","authors":"Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh","doi":"10.1039/D4YA00467A","DOIUrl":"https://doi.org/10.1039/D4YA00467A","url":null,"abstract":"<p >Polyethylene oxide (PEO)-based solid composite electrolytes (SCEs), with inorganic fillers, are studied extensively due to their effective balance between mechanical and electrochemical properties. The correlation between the composition of SCEs and their electrochemical behavior has been studied extensively, primarily focusing on the type of polymer matrix with a bias towards high lithium (Li) salt. In this study, we examine the changes in the properties of SCEs at two low EO : Li ratios, 43 : 1 and 18 : 1, in the PEO-LiTFSI matrix (with and without 10 wt% of 5 μm LLZTO) and evaluate their impact on Li stripping and plating reactions. Although higher salt concentration (18 : 1) results in substantially higher ionic conductivity (by approximately an order of magnitude), interestingly we observe that lower salt concentration (43 : 1) exhibits up to 3 times longer Li cycling life. Notably, electrolytes with low salt concentration (43 : 1) are much stiffer, with compressive modulus more than twice as high as the 18 : 1 counterpart. Although the ionic conductivity of the electrolyte is often the most immediate concern in the electrolyte design process, these findings accentuate the equal importance of mechanical properties in order to ensure successful electrolyte performance throughout prolonged Li cycling.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2820-2827"},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00467a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triethanolamine-assisted surface reconstruction of nickel oxide for efficient oxygen evolution reaction† 三乙醇胺辅助下的氧化镍表面重构,用于高效氧气进化反应†。
IF 3.2
Energy advances Pub Date : 2024-09-26 DOI: 10.1039/D4YA00420E
Jiayun Zhang, Ruth Knibbe and Ian Gentle
{"title":"Triethanolamine-assisted surface reconstruction of nickel oxide for efficient oxygen evolution reaction†","authors":"Jiayun Zhang, Ruth Knibbe and Ian Gentle","doi":"10.1039/D4YA00420E","DOIUrl":"https://doi.org/10.1039/D4YA00420E","url":null,"abstract":"<p >Developing low cost and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is highly desired for renewable energy production. Ni-based electrocatalysts have been widely investigated as candidates for the OER, but developing a low-cost, easily synthesized electrocatalyst with high activity and good stability remains elusive. Herein, we report the facile electrodeposition of triethanolamine-decorated Ni oxide on carbon paper (Ni/CP-TEA) as an efficient electrocatalyst for water oxidation. Structural and experimental analyses reveal that the electrode surface is modified by triethanolamine (TEA) through Ni–N coordination bonding. The leaching of TEA drives rapid <em>in situ</em> surface reconstruction, facilitating the generation of high-valence Ni (Ni<small><sup>3+</sup></small>) species, thereby accelerating the OER performance. The Ni/CP-TEA exhibits enhanced electrocatalytic OER performance with a low overpotential of 320 mV at 10 mA cm<small><sup>−2</sup></small> and good long-term stability. This work presents a simple route for the rational design of cost-effective and highly efficient OER catalysts.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2812-2819"},"PeriodicalIF":3.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00420e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries 利用阻尼振荡电路优势的高频交流加热器,适用于低压锂离子电池
IF 3.2
Energy advances Pub Date : 2024-09-25 DOI: 10.1039/D4YA00303A
Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke
{"title":"A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries","authors":"Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke","doi":"10.1039/D4YA00303A","DOIUrl":"https://doi.org/10.1039/D4YA00303A","url":null,"abstract":"<p >In many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min<small><sup>−1</sup></small> and it was possible to raise the battery temperature from −10 °C to 10 °C using only 3.1% of its own usable capacity.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2828-2841"},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00303a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Zn/Mn on the supercapacitor behavior of high-entropy FeCoNiCrZn/Mn alloy† Zn/Mn对高熵FeCoNiCrZn/Mn合金超级电容器性能的影响
IF 3.2
Energy advances Pub Date : 2024-09-24 DOI: 10.1039/D4YA00376D
Gobinda Chandra Mohanty, Chinmayee Chowde Gowda, Pooja Gakhad, M. Sanjay, Abhishek Singh, Koushik Biswas and Chandra Sekhar Tiwary
{"title":"Effect of Zn/Mn on the supercapacitor behavior of high-entropy FeCoNiCrZn/Mn alloy†","authors":"Gobinda Chandra Mohanty, Chinmayee Chowde Gowda, Pooja Gakhad, M. Sanjay, Abhishek Singh, Koushik Biswas and Chandra Sekhar Tiwary","doi":"10.1039/D4YA00376D","DOIUrl":"https://doi.org/10.1039/D4YA00376D","url":null,"abstract":"<p >High-entropy alloys (HEAs) are emerging as potential electrode materials for energy storage owing to their unique multivalent transition states. Herein, we demonstrate the supercapacitor behavior of an HEA consisting of structural elements (earth abundant metals) iron, cobalt, nickel, chromium, and zinc (FeCoNiCrZn). The role of zinc as a replacement for manganese in FeCoNiCrZn/Mn was studied. The highest specific capacitance obtained was ∼556 F g<small><sup>−1</sup></small> at 5 mV s<small><sup>−1</sup></small> in an aqueous electrolyte. Further, an asymmetric liquid-state device was fabricated, which demonstrated the highest capacitance of 98 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> with a specific energy density of 34.8 W h kg<small><sup>−1</sup></small> at a specific power density of 800 W kg<small><sup>−1</sup></small>. Detailed microscopy and spectroscopy analyses provided insights into the electrochemical behavior of individual elements in the HEA. Experimental observations were further supported by density functional theory (DFT) calculations, which showed d-band shifts in each individual element and the synergistic nature of the FeCoNiCrZn HEA compared to its individual nanoclusters.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2972-2985"},"PeriodicalIF":3.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00376d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes† 研究单碳硼烷钙固态电解质的离子导电性和合成条件†。
IF 3.2
Energy advances Pub Date : 2024-09-20 DOI: 10.1039/D4YA00441H
Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo
{"title":"Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes†","authors":"Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo","doi":"10.1039/D4YA00441H","DOIUrl":"https://doi.org/10.1039/D4YA00441H","url":null,"abstract":"<p >Multivalent-ion and all-solid-state batteries have emerged as potential solutions to address resource concerns and safety issues. Calcium is a promising element for multivalent-ion batteries owing to its abundance in the Earth's crust and low reduction potential. In addition, complex hydrides exhibit both high ion conductivity and reduction stability, making them suitable materials for solid-state ion conductors. In this study, we investigated the thermal stability and optimised the synthesis conditions of calcium monocarborane, namely, Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small>, which is a <em>closo</em>-type calcium complex hydride. In addition, we conducted electrochemical analysis to assess its performance as a solid-state divalent-ion conductor. The results indicate that a heat-treatment temperature of 433 K provides Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> with higher ion conductivity (<em>σ</em> = 1.42 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>) than the other heating temperatures. Thus, 433 K is considered optimal because [CB<small><sub>11</sub></small>H<small><sub>12</sub></small>]<small><sup>−</sup></small> anions decompose when heat-treated at and above 453 K. Furthermore, the insertion and deinsertion of Ca<small><sup>2+</sup></small> ions are stable and reversible in symmetric cells employing Ca–Sn alloy electrodes, representing the first time this has been observed for an inorganic solid-state calcium-ion conductor. Such insertion and deinsertion highlight the potential of Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> as a solid-state electrolyte for battery applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2758-2763"},"PeriodicalIF":3.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00441h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction† 在电化学二氧化碳还原过程中通过协同 2D/0D 纳米结构 VCu 层状双氢氧化物/二氧化钛催化剂提高乙烯产量
IF 3.2
Energy advances Pub Date : 2024-09-18 DOI: 10.1039/D4YA00417E
Sneha S. Lavate and Rohit Srivastava
{"title":"Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction†","authors":"Sneha S. Lavate and Rohit Srivastava","doi":"10.1039/D4YA00417E","DOIUrl":"10.1039/D4YA00417E","url":null,"abstract":"<p >The electrochemical conversion of CO<small><sub>2</sub></small> into C<small><sub>1</sub></small> and C<small><sub>2</sub></small> hydrocarbons, such as methane and ethylene, is a promising pathway toward achieving net zero carbon emissions; however, owing to the high activation barrier of CO<small><sub>2</sub></small>, this reaction remains a big challenge. In this work, an effective strategy has been developed through the synthesis of a low-cost vanadium- and copper-based layered double hydroxide (LDH) decorated with TiO<small><sub>2</sub></small> nanoparticles (VCu LDH/TiO<small><sub>2</sub></small>) as a highly efficient electrocatalyst for the electrochemical reduction of CO<small><sub>2</sub></small> to ethylene. Structural and morphological studies of the developed electrocatalyst were carried out using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (FESEM), X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM), which confirmed the successful formation of VCu LDH/TiO<small><sub>2</sub></small>. The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) was performed in 0.1 M KHCO<small><sub>3</sub></small> using an H-type cell and afforded CO, H<small><sub>2</sub></small>, CH<small><sub>4</sub></small>, and C<small><sub>2</sub></small>H<small><sub>4</sub></small> as value-added end products. The highest faradaic efficiency of 84% was obtained for C<small><sub>2</sub></small>H<small><sub>4</sub></small> at −0.4 V <em>vs.</em> RHE. The above results suggest that the VCu LDH/TiO<small><sub>2</sub></small> NP electrocatalyst may be an excellent candidate for CO<small><sub>2</sub></small> reduction and can also be utilized in a wide range of energy conversion and storage applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 11","pages":" 2801-2811"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00417e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信