Princess Stephanie Llanos, Alisa R. Bogdanova, Filipp Obrezkov, Nastaran Farrahi and Tanja Kallio
{"title":"Impact of powder and electrode ALD coatings on the performance of intercalation cathodes for lithium–ion batteries†","authors":"Princess Stephanie Llanos, Alisa R. Bogdanova, Filipp Obrezkov, Nastaran Farrahi and Tanja Kallio","doi":"10.1039/D4YA00583J","DOIUrl":"https://doi.org/10.1039/D4YA00583J","url":null,"abstract":"<p >The desire to obtain higher energy densities in lithium–ion batteries (LIBs) to meet the growing demands of emerging technologies is faced with challenges related to poor capacity retention during cycling caused by structural and interfacial instability of the battery materials. Since the electrode–electrolyte interface plays a decisive role in achieving remarkable electrochemical performance, it must be suitably engineered to address the aforementioned issues. The development of coatings, particularly on the surface of cathode materials, has been proven to be effective in resolving interfacial issues in LIBs. The use of atomic layer deposition (ALD) over other surface coating techniques is advantageous in terms of coating uniformity, conformity, and thickness control. This review article provides a summary of the impact of various ALD-engineered surface coatings to the cycling performance of different intercalation cathode materials in LIBs. Since ALD allows coating development on complex substrates, this article provides a comprehensive discussion of coatings formed directly on a powder active material and composite electrode. Additionally, a perspective regarding the fundamental deposition parameters and electrochemical testing data to be reported in future research is provided.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 364-386"},"PeriodicalIF":3.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00583j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yogita Padwal, Ratna Chauhan, Indra Jeet Chaudhary, Dattatray J. Late, Muthupandian Ashokkumar and Suresh Gosavi
{"title":"In situ synthesis of VO2@C nanocomposites for enhanced visible-light photocatalysis in wastewater remediation and sustainable hydrogen generation","authors":"Yogita Padwal, Ratna Chauhan, Indra Jeet Chaudhary, Dattatray J. Late, Muthupandian Ashokkumar and Suresh Gosavi","doi":"10.1039/D4YA00587B","DOIUrl":"https://doi.org/10.1039/D4YA00587B","url":null,"abstract":"<p >In this study, we explored the efficacy of VO<small><sub>2</sub></small>/carbon nanocomposites as promising photocatalysts for hydrogen generation and dye degradation under natural sunlight. These nanocomposites were synthesized using a facile one-step hydrothermal method at 180 °C using dextrose as the carbon source with optimized reaction time. The synthesized materials were characterized using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analysis, to confirm their structural and physiochemical properties. FESEM analysis revealed the monoclinic crystalline structure of VO<small><sub>2</sub></small>, accompanied by the formation of nanosheets surrounding carbon spheres of ∼50 nm in diameter. Optical analysis indicated that the material shows broad absorption in the visible region with a band gap range from 2.24 to 1.87 eV. XPS and Raman spectroscopy provided further confirmation of the successful formation of the VO<small><sub>2</sub></small>/C composite. Among the synthesized samples, the VO<small><sub>2</sub></small>/C composite synthesized within 48 hours of hydrothermal treatment (VC-5) exhibited the highest photocatalytic activity. The VC-5 composite exhibited a hydrogen production rate of 2545.24 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small> and demonstrated notable photocatalytic efficiency, achieving 97% degradation of methylene blue within 5 minutes and 80% degradation of Victoria blue within 15 minutes under natural sunlight. The enhanced photocatalytic performance of these hybrid nanomaterials is attributed to their large surface area, high porosity, uniform morphology, and the synergistic interaction between VO<small><sub>2</sub></small> and carbon. These factors enhance visible light absorption and charge carrier dynamics, significantly improving the photocatalytic performance of VO<small><sub>2</sub></small>/C nanocomposites.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 281-295"},"PeriodicalIF":3.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00587b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong
{"title":"The impact of double crosslinking and alkaline activation strategies on the multifaceted characteristics of quaternized poly(vinyl alcohol) anion exchange membranes","authors":"Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong","doi":"10.1039/D4YA00555D","DOIUrl":"https://doi.org/10.1039/D4YA00555D","url":null,"abstract":"<p >This study investigates the effects of crosslinking strategies and KOH activation on the multifaceted characteristics of quaternized poly(vinyl alcohol) (QPVA) membranes for anion exchange membrane (AEM) applications. <em>In situ</em> and combined <em>in situ</em>/<em>ex situ</em> crosslinking with glutaraldehyde were evaluated at 5 M, 6 M, and 8 M KOH concentrations. Multifaceted characteristics on the membranes including ionic conductivity, swelling degree, thermal and oxidative stability are studied. Four types of membranes: M1 (<em>in situ</em> crosslinked, heated), M2 (<em>in situ</em> crosslinked, no heating), M1 2x (<em>in situ</em>, heated and <em>ex situ</em> crosslinked), and M2 2x (<em>in situ</em>, no heating and <em>ex situ</em> crosslinked) were synthesized. The M1 5 M KOH membrane (<em>in situ</em> crosslinked, heated activation) demonstrated the highest ionic conductivity (40.93 mS cm<small><sup>−1</sup></small> before equilibrium, 33.41 mS cm<small><sup>−1</sup></small> after equilibrium) and moderate oxidative stability (81.10%). Combined crosslinking and higher activation temperatures improved the membrane stability and mechanical properties but reduced the oxidative stability owing to potential alkaline attack on glutaraldehyde crosslinked groups. Oxidative stability is critical for AEMs because they are exposed to reactive oxygen species (ROS) generated during fuel cell operation or electrolysis. Poor oxidative stability can lead to degradation of the membrane, reducing its lifespan and overall performance in these applications. The novelty of this work lies in the dual crosslinking strategy, which significantly enhances the mechanical and thermal properties of QPVA membranes, while also highlighting the impact of KOH activation on crystallinity and ion transport. This study emphasizes the importance of optimizing crosslinking and activation conditions to develop high-performance QPVA membranes for energy conversion and storage applications such as fuel cells and electrolyzers.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 400-413"},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00555d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well pad-level geospatial differences in the carbon footprint and direct land use change impacts of natural gas extraction†","authors":"Amir Sharafi and Marie-Odile P. Fortier","doi":"10.1039/D4YA00585F","DOIUrl":"https://doi.org/10.1039/D4YA00585F","url":null,"abstract":"<p >Thorough accounting of the climate change impacts of natural gas is crucial to guide the energy transition towards climate change mitigation, as even decarbonization roadmaps project continued natural gas use into the future. The climate change impacts of natural gas extraction have not previously been assessed at the well pad level, accounting for a multitude of geospatial differences between individual pads. Well pads constructed across a varied landscape lead to a range of well pad areas, earth flattening needs, well pad lifetimes, total gas production, and direct land use change (DLUC) effects such as loss of original biomass, soil organic carbon loss, change in net primary productivity, and altering the surface albedo of the site. Using existing well pad data, machine learning techniques, and satellite imagery, the spatial extents of thousands of well pads in New Mexico were delineated for site-specific data collection. A parametric life cycle assessment (LCA) model of natural gas-producing well pads was developed to integrate geospatial differences and DLUC effects, yielding scenario analysis results for each identified well pad. The DLUC effects contributed a median of 14.4% and a maximum of 59.0% to natural gas extraction carbon footprints. The use of well pad-level data revealed that the carbon footprint of natural gas extraction ranges across orders of magnitude, from 0.016 to 46.4 g CO<small><sub>2</sub></small>eq per MJ. The results highlight the need to quantify the climate change impacts of establishing a well pad and extracting natural gas case-by-case, with geographically specific data, to guide new installations towards lower emissions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 4","pages":" 536-552"},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00585f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ito, K. Nozawa, N. Saitoh, N. Yoshizawa, T. Suemasu and K. Toko
{"title":"Effects of annealing conditions on the battery anode properties of multilayer graphene due to layer exchange","authors":"R. Ito, K. Nozawa, N. Saitoh, N. Yoshizawa, T. Suemasu and K. Toko","doi":"10.1039/D4YA00505H","DOIUrl":"https://doi.org/10.1039/D4YA00505H","url":null,"abstract":"<p >The annealing conditions of the layer-exchange synthesis of multilayer graphene significantly affected its crystallinity and lithium-ion battery anode properties. We demonstrated excellent capacity retention and fast charge–discharge properties in multilayer graphene synthesized at low temperatures (400 °C). These results could contribute to the realization of flexible thin-film batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 239-243"},"PeriodicalIF":3.2,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00505h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pin-Yi Zhao, Kwang-Leong Choy, Yongyi Song, Shudong Zhang and Rui Ma
{"title":"Enhanced electrochemical performance by alumina-coated graphite anodes via spray coating†","authors":"Pin-Yi Zhao, Kwang-Leong Choy, Yongyi Song, Shudong Zhang and Rui Ma","doi":"10.1039/D4YA00582A","DOIUrl":"https://doi.org/10.1039/D4YA00582A","url":null,"abstract":"<p >Lithium-ion batteries (LIBs) are essential for energising portable devices, electric cars, and energy storage systems. Graphite is a frequently utilised anode material; nonetheless, the continual formation of a solid electrolyte interface (SEI) during cycling results in capacity degradation owing to electrolyte depletion. This study tackles this issue by employing alumina coatings on graphite electrodes <em>via</em> the spray coating technique, which is cost-effective and scalable. Electrodes with different alumina concentrations (1 wt%, 4 wt%, and 7 wt%) were assessed for electrochemical performance. The 1 wt% alumina-coated electrode demonstrated enhanced cycling stability, with 94.97% capacity retention after 100 cycles, in contrast to 91.74% for the uncoated graphite. The Al<small><sub>2</sub></small>O<small><sub>3</sub></small> coating functions as a preformed SEI, diminishing electrolyte decomposition and improving the cycling performance and rate capability of electrodes, particularly at elevated C-rates. This research illustrates that using spray-coated alumina is an effective technique for enhancing the durability and performance of graphite anodes in lithium-ion batteries, with the potential for extensive applications in energy storage systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 244-248"},"PeriodicalIF":3.2,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00582a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prince J. J. Sagayaraj, Kavinkumar S., Keishi Oyama, Naoko Okibe, Hyoung-il Kim and Karthikeyan Sekar
{"title":"Extending the accessibility of catalytic active sites through l-cysteine assisted sulfidation for promoting the hydrogen evolution reaction†","authors":"Prince J. J. Sagayaraj, Kavinkumar S., Keishi Oyama, Naoko Okibe, Hyoung-il Kim and Karthikeyan Sekar","doi":"10.1039/D4YA00578C","DOIUrl":"https://doi.org/10.1039/D4YA00578C","url":null,"abstract":"<p >Green hydrogen production has been a particular focus in recent times for implementing sustainable fuels in the future energy economy. One of the most effective ways to produce clean and green hydrogen is electrocatalytic overall water splitting. Various researchers with their persistent explorations have made this topic, the research hotspot in understanding the catalysis mechanism and developing new novel materials. As the hydrogen evolution reaction (HER) kinetically limits the overall water splitting reaction, this work demonstrates the <small>L</small>-cysteine assisted synthesis of millerite nickel sulfide dispersed as particles on nickel foam (NS/NF) by a simple one-step hydrothermal process as a self-supported working electrode. The controlled phase of NiS is confirmed by XRD and TEM analysis and the size and morphology of the catalyst are characterised by SEM analysis. XAS analysis further explores the bulk structure and chemical coordination within the crystal system according to the XANES and EXAFS findings. The HER performance of the NS/NF catalyst exhibits superior activity to bare NF, requiring an overpotential of 140 mV to deliver a current density of −10 mA cm<small><sup>−2</sup></small> with a Tafel slope of 112.3 mV dec<small><sup>−1</sup></small>. The catalyst demonstrated excellent durability for 50 h with further electro-activation of NS/NF under reduction conditions. In a two-electrode system, NS/NF||RuO<small><sub>2</sub></small> required only 1.79 V as the overall cell voltage to generate a current density of 10 mA cm<small><sup>−2</sup></small>. This study illustrates a simple and facile route for NiS synthesis with extendable electrochemical surface area (ECSA), demonstrating superior HER activity over time, under alkaline conditions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 296-303"},"PeriodicalIF":3.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00578c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senhao Wang, Andrea La Monaca and George P. Demopoulos
{"title":"Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook","authors":"Senhao Wang, Andrea La Monaca and George P. Demopoulos","doi":"10.1039/D4YA00542B","DOIUrl":"https://doi.org/10.1039/D4YA00542B","url":null,"abstract":"<p >Composite solid-state electrolytes (CSEs) with multiple phases offer greater flexibility to customize and combine the advantages of single-phase electrolytes, making them promising candidates for commercial all-solid-state batteries (ASSBs). Based on existing investigations, this review provides a comprehensive overview of the recent progress in CSEs. First, we introduce the historical development of solid-state ionic conductors, and then summarize the fundamentals including key materials and mechanisms of lithium-ion transport. Three main types of advanced structures for CSEs are classified and highlighted according to the recent progress, namely composite solid electrolytes with passive fillers, composite solid electrolytes with active fillers, and 3D framework composite solid electrolytes. Finally, the challenges and perspectives of the composite solid-state electrolytes are discussed.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 1","pages":" 11-36"},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00542b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hafsa Mehmood, Haseeb Akbar, Pariyapat Nilsalab and Shabbir H. Gheewala
{"title":"Exploring the spectrum: an environmental examination of hydrogen's diverse colors","authors":"Hafsa Mehmood, Haseeb Akbar, Pariyapat Nilsalab and Shabbir H. Gheewala","doi":"10.1039/D4YA00570H","DOIUrl":"https://doi.org/10.1039/D4YA00570H","url":null,"abstract":"<p >Hydrogen is emerging as an immense source of energy having the potential to at least partly replace fossil fuels. It is an abundant element on earth, but does not mainly exist in free form. Hydrogen can be produced through different technologies and feedstocks, and based on these, it can be categorized into colors with different environmental impacts. This work aimed to review the environmental impacts of the production of gray (from natural gas without carbon capture and storage), brown (from coal gasification), blue (from fossil fuels with carbon capture and storage), green (from renewable energy or biological process), and turquoise (pyrolysis of natural gas) hydrogen and to identify sustainable hydrogen production pathways that minimize environmental impacts. Global warming, acidification, eutrophication, and resource depletion were considered as indicators to assess the environmental impacts. The results showed that brown hydrogen produced <em>via</em> coal gasification had the highest global warming, acidification, and resource depletion impacts among all the options considered. On the other hand, green hydrogen from electrolysis through wind energy had the lowest environmental impacts. However, adopting these hydrogen colors presents different challenges and opportunities. Success depends on effective policy frameworks, international cooperation, and technological readiness to ensure positive contributions to global sustainability goals.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 224-238"},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00570h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kobby Saadi, Raphael Flack, Valery Bourbo, Ran Elazari and David Zitoun
{"title":"Solid bromine complexing agents: long-term solution for corrosive conditions in redox-flow battery†","authors":"Kobby Saadi, Raphael Flack, Valery Bourbo, Ran Elazari and David Zitoun","doi":"10.1039/D4YA00367E","DOIUrl":"https://doi.org/10.1039/D4YA00367E","url":null,"abstract":"<p >Redox flow batteries (RFBs) fulfill the requirements for long-duration energy storage (LDES), and the use of bromine as a catholyte has garnered substantial interest due to its high availability and low cost. However, at high states of charge, the vapor pressure of bromine presents significant safety concerns within the catholyte tank, while polybromide species have been shown to corrode the metals present in the stack. Traditionally, soluble bromine complexing agents (BCAs) have been employed to mitigate the concentration of free bromine, providing some improvement in safety; however, this has often resulted in significant reductions in power density and durability. In this study, we present the development of a solid BCA incorporated into the catholyte tank of a hydrogen-bromine RFB (HBRFB). The long-term separation of the bromine-rich solid phase from the flowing liquid phases enables sustained high performance for over 250 cycles. The effective complexing-dissociating equilibrium within the electrolyte tank ensures adequate bromine concentration for operation at high current densities. This advancement significantly enhances the viability of bromine-based RFB technology as a dependable solution for long-duration energy storage.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 273-280"},"PeriodicalIF":3.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00367e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}