{"title":"In Vitro and In Vivo Therapeutics of Double-Layered Hydrogels","authors":"Shikha Awasthi","doi":"10.1002/adtp.202400266","DOIUrl":"https://doi.org/10.1002/adtp.202400266","url":null,"abstract":"<p>Double-layered hydrogels are organized into different nanostructured layers and are the preferred material for various in vitro and in vivo therapeutic applications. Hydrogels are extensively employed in several domains, such as water treatment and biomedicine. Because of hydrogels' unique potentials like their tissue resemblance and ease of processing, significant progress is achieved in these domains. However, based on a thorough examination of hydrogel microstructures, it is difficult for conventional homogeneous hydrogels to concurrently address various demands due to the growth of in vitro and in vivo necessities in controlled drug delivery, cartilage repair, cell encapsulation, and other utilities. Thankfully, research on heterogeneous dual-layered hydrogels has developed and is now a remarkable area of hydrogel engineering. This review abridged the current developments in multi-layered hydrogels according to their structural design, fabrication techniques, and recent experimental findings along with special attention to the therapeutic applications of double-layered hydrogels. The report concluded by discussing the challenges in the design of double-layered hydrogels and pointed out a new direction of 3D printing, which may offer a new approach to designing double-layered hydrogels and expand the range of in vitro and in vivo therapeutic studies.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muskan Saif Khan, Mirza Albash Baig, Meng Tian, Bowen Li, Guoqing Feng, Run Yang, Yang Bai, Bin Zheng
{"title":"Applications of Nanomaterial-Microorganism Hybrid Systems in the Treatment of Tumor","authors":"Muskan Saif Khan, Mirza Albash Baig, Meng Tian, Bowen Li, Guoqing Feng, Run Yang, Yang Bai, Bin Zheng","doi":"10.1002/adtp.202400425","DOIUrl":"https://doi.org/10.1002/adtp.202400425","url":null,"abstract":"<p>Recent advances in cancer treatments such as targeted therapy and immunotherapy, have brought hope for curing a variety of cancers. However, there are ongoing challenges such as poor targeting, biocompatibility and biosafety. Engineered bacteria can cope with these problems, providing a unique therapeutic approach for the treatment of tumors. Nanotechnology offers the potential to modify the surface of bacteria, and the use of biofilm and coating technology to physically encapsulate bacteria can help bacteria escape the host immune system and improve the efficiency and safety of drug delivery. Synthetic biology and genetic engineering technologies can treat bacteria as “robotic factories” to produce and deliver anti-cancer drugs, including anti-tumor cytokines, immunomodulators, prodrug enzymes, and so on, according to clinical needs. Engineered bacteria therapies can be used either as monotherapy or in combination with other anticancer therapies to achieve better clinical outcomes. In this review, it introduce and summarize the processing and modification methods of engineered bacteria for cancer targeted therapy, and summarize and analyze the current clinical trials of engineered bacteria for cancer targeted therapy.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Assembled Nanocarriers of Synthetic and Natural Plasmalogens for Potential Nanomedicine Development (Adv. Therap. 2/2025)","authors":"Yu Wu, Borislav Angelov, Yuru Deng, Takehiko Fujino, Md Shamim Hossain, Thomas Bizien, Angelina Angelova","doi":"10.1002/adtp.202570004","DOIUrl":"https://doi.org/10.1002/adtp.202570004","url":null,"abstract":"<p>In article 2400093, Angelina Angelova and co-workers use synchrotron small-angle X-ray scattering to reveal the variety of nanoassemblies (cubosomes, hexosomes, or vesicles) that scallop-derived plasmalogen phospholipids can form in mixtures with co-lipids. Plasmalogen-based nanotherapeutics exert anti-apoptotic effects and improve brain-derived neurotrophic factor (BDNF) protein expression required for neuronal cell survival.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202570004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Buiel, Jordan Robert, Dikran Mekhjian, Deepak S. Chauhan, Xavier Banquy
{"title":"Photothermal Therapy: From Encouraging Lab Results to Lackluster Clinical Translation","authors":"Jonathan Buiel, Jordan Robert, Dikran Mekhjian, Deepak S. Chauhan, Xavier Banquy","doi":"10.1002/adtp.202400347","DOIUrl":"https://doi.org/10.1002/adtp.202400347","url":null,"abstract":"<p>Cancer is a pervasive and complex disease that poses a significant threat to public health worldwide. The prevalent therapeutic options, including chemotherapy and radiotherapy, pose detrimental side effects. Consequently, non-invasive and selective therapeutic strategies are sought, such as nanoparticle-mediated photothermal therapy (PTT). This technique employs benign photothermal agents that gather within tumors post-injection. Under near-infra-red light exposure, these agents induce localized hyperthermia, killing tumor cells. Here, the laboratory development, recent advances, and clinical status of photothermal therapy are examined. Despite two decades of development, photothermal therapy has yielded few clinical trials. A standout agent, the gold nanoshell, holds promise for prostate cancer treatment as the only one in human clinical trials. To provide context, PTT is compared to photodynamic therapy, which has over 250 human trials in 40 years, highlighting the need to bridge the gap for effective photothermal therapy translation. Therefore, we delve into the gap of clinical implementation between photothermal therapy and similar technologies, such as photodynamic therapy, laser interstitial thermal therapy, and cancer nanomedicines, offering insights and potential solutions.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danilo M. dos Santos, Hasika Suresh, Samantha J. Kruzshak, Jihyun Kim, Peggy Cebe, James D. Baleja, Emmanuel S. Tzanakakis, Sameer Sonkusale
{"title":"Engineering Eutectogel Microneedle Patch as Effective Transdermal Delivery System of Hydrophobic Drugs","authors":"Danilo M. dos Santos, Hasika Suresh, Samantha J. Kruzshak, Jihyun Kim, Peggy Cebe, James D. Baleja, Emmanuel S. Tzanakakis, Sameer Sonkusale","doi":"10.1002/adtp.202400521","DOIUrl":"https://doi.org/10.1002/adtp.202400521","url":null,"abstract":"<p>Conventional drug delivery methods often face challenges in terms of patient adherence and drug administration. Microneedles (MNs) patches have emerged as a promising alternative, offering a minimally invasive transdermal route for medications. However, their drug-loading capacity remains limited, particularly for hydrophobic active pharmaceutical ingredients (APIs). Herein, microneedles are designed based on eutectic solvent gels (eutectogels) as transdermal carriers for hydrophobic APIs. A natural deep eutectic solvent (NADES) is combined to enhance the solubility of the hydrophobic APIs within the GelMA/PEGDA matrix for mechanical strength and sustained release from the resulting eutectogels microneedles (EU-MNs). Using docetaxel, 5-fluorouracil, and curcumin as hydrophobic APIs models, the superior drug-loading capacity of the EU-MNs is demonstrated. In vitro experiments revealed that the EU-MNs provided a sustained release of distinct hydrophobic APIs over 4 days. Additionally, by properly adjusting the concentration and type of APIs, these microneedle patches do not exhibit cytotoxic effects on fibroblasts cell line (NIH/3T3), underscoring their potential for safe and effective transdermal drug delivery. These findings highlight the potential of EU-MNs as versatile, eco-friendly transdermal vehicles for large amounts of hydrophobic APIs, leading to more effective treatments for these drugs.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Copper Ions in Mediating the Anti-Cancer Effects Using Nanomaterials","authors":"Irfan Mehmud, Song Wu, Shaohua Zhang","doi":"10.1002/adtp.202400426","DOIUrl":"https://doi.org/10.1002/adtp.202400426","url":null,"abstract":"<p>Copper plays a pivotal role in human physiology, particularly in oncology, acting both as a facilitator of progression and also as a potential avenue for advanced therapeutic approaches. Maintaining copper homeostasis is crucial. The dysregulation of copper homeostasis is implicated in tumor growth through its involvement in critical processes of angiogenesis, proliferation, and metastasis. The elevation in copper level in the tumor microenvironment (TME) activates oncogenic pathways to drive the neovascularization and sustained growth of malignancies. However, the same reliance on copper offers a unique weakness that can be leveraged for innovative therapeutic interventions. The recent advances in nanomedicine enable the synthesis of nanostructures that can help modulate the level of copper with precision offering multifaceted approaches for copper-based cancer therapy with controlled release mechanism, optimized structures to induce cuproptosis, selective eradication of cancer cells with minimum and systemic toxicity. This review explores the dual role of copper in cancer biology, emphasizing its contribution to the progression of tumors and its emerging application in targeted cancer therapy. The review also highlights the potential of nanostructures in harnessing copper-based therapies and their transformative potential from bench to bed side with novel, highly effective, and clinical safety.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiale Li, Qiqiang Zhang, Chunyan Wang, Shupeng Liu
{"title":"Eltrombopag Inhibited Liver Cancer by Enhancing SMYD4 Protein Degradationvia TRIP12 Ubiquitinase","authors":"Jiale Li, Qiqiang Zhang, Chunyan Wang, Shupeng Liu","doi":"10.1002/adtp.202400372","DOIUrl":"https://doi.org/10.1002/adtp.202400372","url":null,"abstract":"<p>According to prior studies, SET and MYND domain-containing protein 4 (SMYD4) is involved in tumor progression and metastasis, representing a potential therapeutic target for tumors. However, no specific inhibitors or drugs targeting SMYD4 are currently available. In this study, molecular docking and molecular dynamics simulations were used to screen small molecule lead compounds binding to SMYD4 protein. CCK8 assay, colony formation assay, EdU assay were used to analyze the viability and proliferation of tumor cells. Flow cytometric analysis was used to evaluate cell apoptosis and cell cycle. Clorazepate, Ativan, Darifenacin and Eltrombopag were found to bind with SMYD4 with the highest probability and to meet the five principles of the drug class. Molecular dynamics simulations showed that Eltrombopag had the strongest binding capacity to SMYD4 protein. The functional analysis showed that Eltrombopag inhibited hepatocellular carcinoma cell proliferation and promoted apoptosis in vivo and in vitro at low density. Moreover, Eltrombopag enhanced ubiquitination of SMYD4 protein and promoted its degradation via thyroid hormone receptor interactor 12(TRIP12). These findings suggest that Eltrombopag is a potential inhibitor of SMYD4 protein, representing a novel leading compound for SMYD4 and applied for tumor treatment.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Van Vo, Hanif Haidari, Allison J. Cowin, Marcus Wagstaff, Bronwyn Dearman, Zlatko Kopecki
{"title":"Dermal Substitutes for Clinical Management of Severe Burn Injuries: Current and Future Perspectives","authors":"Van Vo, Hanif Haidari, Allison J. Cowin, Marcus Wagstaff, Bronwyn Dearman, Zlatko Kopecki","doi":"10.1002/adtp.202400455","DOIUrl":"https://doi.org/10.1002/adtp.202400455","url":null,"abstract":"<p>Despite significant advances in recent decades, severe burns remain a formidable challenge, with high morbidity and mortality rates. The immunocompromised state following severe burn injuries, compounded by the loss of the protective skin barrier, increases the risk of bacterial colonization and invasion. Without appropriate management, infections in burn patients can progress to sepsis, a life-threatening complication. Current burn care often fails to achieve optimal tissue regeneration and infection prevention, necessitating a combination of different approaches. Developing innovative and safer strategies to mitigate burn infections is essential for improving patient outcomes. This review provides updated insights into various biomaterials tailored for managing infections in severe burns, offering comprehensive insights and a summary of emerging technologies for potential clinical application. Additionally, an in-depth discussion on current research and clinical areas that warrant further investigation is presented. Potential avenues for next-generation dermal substitutes aimed at improving regeneration and preventing burn wound infections are then explored.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Léo-Paul Tricou, Natalie Guirguis, Sarah Djebbar, Benjamin R. Freedman, Simon Matoori
{"title":"Bee Better: The Role of Honey in Modern Wound Care","authors":"Léo-Paul Tricou, Natalie Guirguis, Sarah Djebbar, Benjamin R. Freedman, Simon Matoori","doi":"10.1002/adtp.202400502","DOIUrl":"https://doi.org/10.1002/adtp.202400502","url":null,"abstract":"<p>Honey has been used as an empirical wound care agent for thousands of years and continues to be investigated and used in chronic wound care. In the past few years, several commercially available medical grade honey-based products have been approved for chronic wound therapy. Clinical trials showed that the therapeutic benefit of honey depends on wound type and honey composition. Recent insights into the pharmacology of honey in wound therapy over the past two decades have led to increased interest in this natural remedy and highlighted various antimicrobial and immunomodulatory properties that contribute to its pharmacologic action. However, the interaction between honey and the wound microenvironment on wound healing remains unclear. In this perspective, the current clinical evidence supporting the use of honey in wound care is presented and highlights its molecular mechanisms of action to eventually critically discuss the opportunities and challenges of using honey in wound care.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143945025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}