{"title":"Rab46: a novel player in mast cell function.","authors":"Lucia Pedicini, Jessica Smith, Sinisa Savic, Lynn McKeown","doi":"10.1093/discim/kyad028","DOIUrl":"https://doi.org/10.1093/discim/kyad028","url":null,"abstract":"<p><p>Mast cells are infamous for mediating allergic and inflammatory diseases due to their capacity of rapidly releasing a wide range of inflammatory mediators stored in cytoplasmic granules. However, mast cells also have several important physiological roles that involve selective and agonist-specific release of these active mediators. While a filtering mechanism at the plasma membrane could regulate the selective release of some cargo, the plethora of stored cargo and the diversity of mast cell functions suggests the existence of granule subtypes with distinct trafficking pathways. The molecular mechanisms underlying differential trafficking and exocytosis of these granules are not known, neither is it clear how granule trafficking is coupled to the stimulus. In endothelial cells, a Rab GTPase, Rab46, responds to histamine but not thrombin signals, and this regulates the trafficking of a subpopulation of endothelial-specific granules. Here, we sought to explore, for the first time, if Rab46 plays a role in mast cell function. We demonstrate that Rab46 is highly expressed in human and murine mast cells, and Rab46 genetic deletion has an effect on mast cell degranulation that depends on both stimuli and mast cell subtype. This initial insight into the contribution of Rab46 to mast cell function and the understanding of the role of Rab46 in stimuli-dependent trafficking in other cell types necessitates further investigations of Rab46 in mast cell granular trafficking so that novel and specific therapeutic targets for treatment of the diverse pathologies mediated by mast cells can be developed.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"3 1","pages":"kyad028"},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discovery immunologyPub Date : 2023-12-04eCollection Date: 2023-01-01DOI: 10.1093/discim/kyad027
Sally A Clayton, Chloe Lockwood, John D O'Neil, Kalbinder K Daley, Sofia Hain, Dina Abdelmottaleb, Oliwia O Bolimowska, Daniel A Tennant, Andrew R Clark
{"title":"The glucocorticoid dexamethasone inhibits HIF-1α stabilization and metabolic reprogramming in lipopolysaccharide-stimulated primary macrophages.","authors":"Sally A Clayton, Chloe Lockwood, John D O'Neil, Kalbinder K Daley, Sofia Hain, Dina Abdelmottaleb, Oliwia O Bolimowska, Daniel A Tennant, Andrew R Clark","doi":"10.1093/discim/kyad027","DOIUrl":"10.1093/discim/kyad027","url":null,"abstract":"<p><p>Synthetic glucocorticoids are used to treat many chronic and acute inflammatory conditions. Frequent adverse effects of prolonged exposure to glucocorticoids include disturbances of glucose homeostasis caused by changes in glucose traffic and metabolism in muscle, liver, and adipose tissues. Macrophages are important targets for the anti-inflammatory actions of glucocorticoids. These cells rely on aerobic glycolysis to support various pro-inflammatory and antimicrobial functions. Employing a potent pro-inflammatory stimulus in two commonly used model systems (mouse bone marrow-derived and human monocyte-derived macrophages), we showed that the synthetic glucocorticoid dexamethasone inhibited lipopolysaccharide-mediated activation of the hypoxia-inducible transcription factor HIF-1α, a critical driver of glycolysis. In both cell types, dexamethasone-mediated inhibition of HIF-1α reduced the expression of the glucose transporter GLUT1, which imports glucose to fuel aerobic glycolysis. Aside from this conserved response, other metabolic effects of lipopolysaccharide and dexamethasone differed between human and mouse macrophages. These findings suggest that glucocorticoids exert anti-inflammatory effects by impairing HIF-1α-dependent glucose uptake in activated macrophages. Furthermore, harmful and beneficial (anti-inflammatory) effects of glucocorticoids may have a shared mechanistic basis, depending on the alteration of glucose utilization.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 1","pages":"kyad027"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Garrod-Ketchley, Laure Mourgue d'Algue, Katie Littlewood, Gillian Hood, Anne Worthington, Melanie Pattrick, Caroline Sutcliffe, Zoi Valla, Noorshad Joti, Udeshi Zalak, Amy Edwards, Sarah Finer, S. Henson
{"title":"The generation of senescent-like CD4+ EMRA T cells in T2D and their contribution to poor COVID-19 vaccine responses","authors":"C. Garrod-Ketchley, Laure Mourgue d'Algue, Katie Littlewood, Gillian Hood, Anne Worthington, Melanie Pattrick, Caroline Sutcliffe, Zoi Valla, Noorshad Joti, Udeshi Zalak, Amy Edwards, Sarah Finer, S. Henson","doi":"10.1093/discim/kyad026","DOIUrl":"https://doi.org/10.1093/discim/kyad026","url":null,"abstract":"CD4+ T cells are essential for protection from viral pathogens, such as SARS-CoV-2. However, an increase in the dysfunction CD4+ EMRA subset is likely to hinder the immune response towards viruses. We show here that CD4+ EMRAs are increased with elevated blood glucose, such as people living with T2D, which alters mitochondrial function and causes the differentiation of CD4+ T cells, reducing the immune response to COVID-19 vaccination. CD4+ T cells were examined for senescence, their insulin dynamics, and mitochondrial function after in vitro culture of high and low glucose media, with or without rotenone or mitoQ. Serum samples were used to assess circulating inflammation and IgG antibodies to SARS-CoV-2. People living with T2D had increased expression of CD4+ EMRA T cells, the appearance of which correlated with increasing blood glucose values. The T2D cohort showed a reduced mitochondrial membrane potential and increased mtROS production. These results were mimicked using high glucose media which accelerated CD4+ T cell differentiation and reduced MMP. People living with T2D (non-hyperglycaemic and hyperglycaemic) had altered expression of inflammatory mediators. CD4+ EMRA cells did not respond to COVID-19 peptides, and people with T2D had a reduced T cell and antibody response to SARS-CoV-2 S1 spike protein. We have shown that senescent-like CD4+ EMRA influence the viral response in SARS-CoV-2 and that CD4+ EMRAs may arise from faulty mitochondrial dynamics due to increased environmental glucose. Further study is required to determine the direct link increased glucose has with CD4+ EMRA formation.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139216519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces","authors":"Damian Maseda, S. Manfredo-Vieira, Aimee S Payne","doi":"10.1093/discim/kyad024","DOIUrl":"https://doi.org/10.1093/discim/kyad024","url":null,"abstract":"also increased in mouse models","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"14 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut immune responses and evolution of the gut microbiome – a hypothesis","authors":"Marcus W. Viney, Louise Cheynel","doi":"10.1093/discim/kyad025","DOIUrl":"https://doi.org/10.1093/discim/kyad025","url":null,"abstract":"The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, so driving microbial evolution. Secretory IgA is a major feature of the gut’s adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesise that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling
{"title":"RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression","authors":"Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling","doi":"10.1093/discim/kyad021","DOIUrl":"https://doi.org/10.1093/discim/kyad021","url":null,"abstract":"On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM, the co-factor of the RNA cap methyltransferase RNMT, is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilises RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knock-out T cells activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT co-factor.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"54 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139265082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunotherapy in the context of immune-specialized environment of brain metastases","authors":"F. James, M. Lorger","doi":"10.1093/discim/kyad023","DOIUrl":"https://doi.org/10.1093/discim/kyad023","url":null,"abstract":"Brain metastases (BrM) develop in 20 to 40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eosinophils in obesity and obesity-associated disorders","authors":"Yanan Hu, Svetoslav Chakarov","doi":"10.1093/discim/kyad022","DOIUrl":"https://doi.org/10.1093/discim/kyad022","url":null,"abstract":"Abstract Despite the rising prevalence and costs for the society, obesity etiology and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis and progression of obesity and related metabolic disorders. We summarise eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how adipose tissue environment shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"101 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Bentkowska, Alex Hardgrave, Nadia Iqbal, Laura Gresty, Bethany Marsden, Sheila Macharia, Lucy Jackson-Jones
{"title":"Pericardial & Mediastinal Fat-Associated Lymphoid Clusters are rapidly activated in an alkane induced model of Systemic Lupus Erythematosus","authors":"Karolina Bentkowska, Alex Hardgrave, Nadia Iqbal, Laura Gresty, Bethany Marsden, Sheila Macharia, Lucy Jackson-Jones","doi":"10.1093/discim/kyad017","DOIUrl":"https://doi.org/10.1093/discim/kyad017","url":null,"abstract":"Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease predominated by auto-antibodies that recognise cellular components. Pleural involvement is the most common SLE-related lung disease. Natural antibodies are rapidly secreted by innate-like B cells following perturbation of homeostasis and are important in the early stages of immune activation. The serous cavities are home to large numbers of innate-like B cells present both within serous fluid and resident within fat-associated lymphoid clusters (FALCs). FALCs are important hubs for B-cell activation and local antibody secretion within the body cavities. Patients with SLE can develop anti-phospholipid antibodies and in rare situations develop alveolar haemorrhage. Utilising delivery of the hydrocarbon oil pristane in C57BL/6 mice as a model of SLE we identify a rapid expansion of pleural cavity B cells as early as day 3 after intra-peritoneal pristane delivery. Following pristane delivery, pericardial B1 B cells are proliferative, express the plasma-cell surface marker CD138 and secrete both innate and class switched antibodies highlighting that this cavity niche may play an unrecognised role in the initiation of lupus pleuritis.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135864884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi-Ching Tung, Abhay P S Rathore, Ashley L St. John
{"title":"Conventional and non-conventional antigen presentation by mast cells","authors":"Chi-Ching Tung, Abhay P S Rathore, Ashley L St. John","doi":"10.1093/discim/kyad016","DOIUrl":"https://doi.org/10.1093/discim/kyad016","url":null,"abstract":"Abstract Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen presenting cells (APCs), owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC’s capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135061332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}