I. Brough, Kelsey Thompson, Ciara Latore, F. Penkava, Chelsea Regan, Claire F. Pearson, Hui Shi, A. Ridley, Davide Simone, Lilian Lam, S. Bullers, Caroline Moussa, Rachel Feeney, Mohammed Hussein Al-Mossawi, Fiona Powrie, Stephen Young, Curtis Huttenhower, P. Bowness
{"title":"Elevated type-17 cytokines are present in Axial Spondyloarthritis stool","authors":"I. Brough, Kelsey Thompson, Ciara Latore, F. Penkava, Chelsea Regan, Claire F. Pearson, Hui Shi, A. Ridley, Davide Simone, Lilian Lam, S. Bullers, Caroline Moussa, Rachel Feeney, Mohammed Hussein Al-Mossawi, Fiona Powrie, Stephen Young, Curtis Huttenhower, P. Bowness","doi":"10.1093/discim/kyae005","DOIUrl":"https://doi.org/10.1093/discim/kyae005","url":null,"abstract":"\u0000 Axial Spondyloarthritis (axSpA) is characterized by type-17 immune-driven joint inflammation, and intestinal inflammation is present in around 70% of patients. In this study, we asked whether axSpA stool contained Th17-associated cytokines and whether this related to systemic Th17 activation. We measured stool cytokine and calprotectin levels by ELISA and found that patients with axSpA have increased stool IL-17A, IL-23, GM-CSF and calprotectin. We further identified increased levels of circulating IL-17A+ and IL-17F+ T helper cell lymphocytes in patients with axSpA compared to healthy donors. We finally assessed stool metabolites by unbiased nuclear magnetic resonance (NMR) spectroscopy and found that multiple stool amino acids were negatively correlated with stool IL-23 concentrations. These data provide evidence of type-17 immunity in the intestinal lumen, and suggest its association with microbial metabolism in the intestine.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141014240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gamma delta (γδ) T cells in the female reproductive tract: active participants or indifferent bystanders in reproductive success?","authors":"K. Foyle, Sarah A. Robertson","doi":"10.1093/discim/kyae004","DOIUrl":"https://doi.org/10.1093/discim/kyae004","url":null,"abstract":"\u0000 The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually-transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer and have roles in tissue renewal and homeostasis. In this review we summarize studies in human and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes over the course of the cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy has remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events - or alternatively whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ontogenesis and heterogeneity of basophils","authors":"Jiyeon Park, Suk-Jo Kang","doi":"10.1093/discim/kyae003","DOIUrl":"https://doi.org/10.1093/discim/kyae003","url":null,"abstract":"\u0000 Basophils are the rarest leukocytes, but they have essential roles in protection against helminths, allergic disorders, autoimmune diseases, and some cancers. For years, the clinical significance of basophils has been neglected because of the lack of proper experimental tools to study them. The development of basophil-specific antibodies and animal models, along with genomic advances like single-cell transcriptomics, has greatly enhanced our understanding of basophil biology. Recent discoveries regarding basophils prompted us to write this review, emphasizing the basophil developmental pathway. In it, we chronologically examine the steps of basophil development in various species, which reveals the apparent advent of basophils predating IgE and basophil’s IgE-independent regulatory role in primitive vertebrates. Then, we cover studies of basophil development in adult bone marrow, and compare those of murine and human basophils, introducing newly identified basophil progenitors and mature basophil subsets, as well as the transcription factors that regulate the transitions between them. Last, we discuss the heterogeneity of tissue-resident basophils, which may develop through extramedullary hematopoiesis. We expect that this review will contribute to a deeper understanding of basophil biology from the intricate aspects of basophil development and differentiation, offering valuable insights for both researchers and clinicians.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"247 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139809575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ontogenesis and heterogeneity of basophils","authors":"Jiyeon Park, Suk-Jo Kang","doi":"10.1093/discim/kyae003","DOIUrl":"https://doi.org/10.1093/discim/kyae003","url":null,"abstract":"\u0000 Basophils are the rarest leukocytes, but they have essential roles in protection against helminths, allergic disorders, autoimmune diseases, and some cancers. For years, the clinical significance of basophils has been neglected because of the lack of proper experimental tools to study them. The development of basophil-specific antibodies and animal models, along with genomic advances like single-cell transcriptomics, has greatly enhanced our understanding of basophil biology. Recent discoveries regarding basophils prompted us to write this review, emphasizing the basophil developmental pathway. In it, we chronologically examine the steps of basophil development in various species, which reveals the apparent advent of basophils predating IgE and basophil’s IgE-independent regulatory role in primitive vertebrates. Then, we cover studies of basophil development in adult bone marrow, and compare those of murine and human basophils, introducing newly identified basophil progenitors and mature basophil subsets, as well as the transcription factors that regulate the transitions between them. Last, we discuss the heterogeneity of tissue-resident basophils, which may develop through extramedullary hematopoiesis. We expect that this review will contribute to a deeper understanding of basophil biology from the intricate aspects of basophil development and differentiation, offering valuable insights for both researchers and clinicians.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139869558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discovery immunologyPub Date : 2024-01-30eCollection Date: 2024-01-01DOI: 10.1093/discim/kyae002
Neema Skariah, Olivia J James, Mahima Swamy
{"title":"Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes.","authors":"Neema Skariah, Olivia J James, Mahima Swamy","doi":"10.1093/discim/kyae002","DOIUrl":"10.1093/discim/kyae002","url":null,"abstract":"<p><p>There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"3 1","pages":"kyae002"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deciphering the relationship between temperature and immunity","authors":"Elizabeth Maloney, Darragh Duffy","doi":"10.1093/discim/kyae001","DOIUrl":"https://doi.org/10.1093/discim/kyae001","url":null,"abstract":"Summary Fever is a hallmark symptom of disease across the animal kingdom. Yet, despite the evidence linking temperature fluctuation and immune response, much remains to be discovered about the molecular mechanisms governing these interactions. In patients with rheumatoid arthritis, for instance, it is clinically accepted that joint temperature can predict disease progression. But it was only recently demonstrated that the mitochondria of stimulated T cells can rise to an extreme 50°C, potentially indicating a cellular source of these localized ‘fevers’. A challenge to dissecting these mechanisms is a bidirectional interplay between temperature and immunity. Heat shock response is found in virtually all organisms, activating protective pathways when cells are exposed to elevated temperatures. However, the temperature threshold that activates these pathways can vary within the same organism, with human immune cells, in particular, demonstrating differential sensitivity to heat. Such inter-cellular variation may be clinically relevant given the small but significant temperature differences seen between tissues, ages, and sexes. Greater understanding of how such small temperature perturbations mediate immune responses may provide new explanations for persistent questions in disease such as sex disparity in disease prevalence. Notably, the prevalence and severity of many maladies are rising with climate change, suggesting temperature fluctuations can interact with disease on multiple levels. As global temperatures are rising, and our body temperatures are falling, questions regarding temperature–immune interactions are increasingly critical. Here, we review this aspect of environmental interplay to better understand temperature’s role in immune variation and subsequent risk of disease.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"94 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140480783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa C da Rosa, H. Scales, R. Benson, James M Brewer, Iain B. McInnes, P. Garside
{"title":"The effect of abatacept on T cell activation is not long-lived in vivo","authors":"Larissa C da Rosa, H. Scales, R. Benson, James M Brewer, Iain B. McInnes, P. Garside","doi":"10.1093/discim/kyad029","DOIUrl":"https://doi.org/10.1093/discim/kyad029","url":null,"abstract":"\u0000 Abatacept, a co-stimulatory blocker comprising the extracellular portion of human CTLA-4 linked to the Fc region of IgG1, is approved for the treatment of rheumatoid arthritis. By impairing the interaction between CD28 on T cells and CD80/CD86 on APCs, its mechanisms of action include: the suppression of follicular T helper cells (preventing the breach of self-tolerance in B cells), inhibition of cell cycle progression holding T cells in a state described as “induced naïve” and reduction in DC conditioning. However, less is known about how long these inhibitory effects might last, which is a critical question for therapeutic use in patients. Herein, employing a murine model of OVA-induced DTH, we demonstrate that the effect of abatacept is short-lived in vivo and that the inhibitory effects diminish markedly when treatment is ceased.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"51 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert F. Cunliffe, David C. Stirling, Ilaria Razzano, Valarmathy Murugaiah, E. Montomoli, Sungwon Kim, Madina Wane, Helen Horton, Lisa J. Caproni, J. Tregoning
{"title":"Optimising a linear ‘Doggybone’ DNA vaccine for influenza virus through the incorporation of DNA targeting sequences and neuraminidase antigen","authors":"Robert F. Cunliffe, David C. Stirling, Ilaria Razzano, Valarmathy Murugaiah, E. Montomoli, Sungwon Kim, Madina Wane, Helen Horton, Lisa J. Caproni, J. Tregoning","doi":"10.1093/discim/kyad030","DOIUrl":"https://doi.org/10.1093/discim/kyad030","url":null,"abstract":"\u0000 Influenza virus represents a challenge for traditional vaccine approaches due to its seasonal changes and potential for zoonotic transmission. Nucleic acid vaccines can overcome some of these challenges, especially through the inclusion of multiple antigens to increase breadth of response. RNA vaccines were an important part of the response to the COVID-19 pandemic, but for future outbreaks DNA vaccines may have some advantages in terms of stability and manufacturing cost that warrant continuing investigation to fully realise their potential. Here we investigate influenza virus vaccines made using a closed loop linear DNA platform, Doggybone™ DNA (dbDNA), produced by a rapid and scalable cell-free method. Influenza vaccines have mostly focussed on Haemagglutinin (HA), but the inclusion of Neuraminidase (NA) may provide additional protection. Here we explored the potential of including NA in a dbDNA vaccine, looking at DNA optimisation, mechanism and breadth of protection. We showed that DNA targeting sequences (DTS) improved immune responses against HA but not NA. We explored whether NA vaccine induced protection against influenza virus infection was cell mediated but depletion of CD8 and NK cells made no impact, suggesting it was antibody mediated. This is reflected in restriction of protection only homologous strains of influenza virus. Importantly, we saw that including both HA and NA in a single combined vaccine did not dampen the immune response to either one. Overall, we show that linear dbDNA can induce an immune response against NA which may offer increased protection in instances of HA mismatch where NA remains more conserved.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"23 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rab46: a novel player in mast cell function.","authors":"Lucia Pedicini, Jessica Smith, Sinisa Savic, Lynn McKeown","doi":"10.1093/discim/kyad028","DOIUrl":"https://doi.org/10.1093/discim/kyad028","url":null,"abstract":"<p><p>Mast cells are infamous for mediating allergic and inflammatory diseases due to their capacity of rapidly releasing a wide range of inflammatory mediators stored in cytoplasmic granules. However, mast cells also have several important physiological roles that involve selective and agonist-specific release of these active mediators. While a filtering mechanism at the plasma membrane could regulate the selective release of some cargo, the plethora of stored cargo and the diversity of mast cell functions suggests the existence of granule subtypes with distinct trafficking pathways. The molecular mechanisms underlying differential trafficking and exocytosis of these granules are not known, neither is it clear how granule trafficking is coupled to the stimulus. In endothelial cells, a Rab GTPase, Rab46, responds to histamine but not thrombin signals, and this regulates the trafficking of a subpopulation of endothelial-specific granules. Here, we sought to explore, for the first time, if Rab46 plays a role in mast cell function. We demonstrate that Rab46 is highly expressed in human and murine mast cells, and Rab46 genetic deletion has an effect on mast cell degranulation that depends on both stimuli and mast cell subtype. This initial insight into the contribution of Rab46 to mast cell function and the understanding of the role of Rab46 in stimuli-dependent trafficking in other cell types necessitates further investigations of Rab46 in mast cell granular trafficking so that novel and specific therapeutic targets for treatment of the diverse pathologies mediated by mast cells can be developed.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"3 1","pages":"kyad028"},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discovery immunologyPub Date : 2023-12-04eCollection Date: 2023-01-01DOI: 10.1093/discim/kyad027
Sally A Clayton, Chloe Lockwood, John D O'Neil, Kalbinder K Daley, Sofia Hain, Dina Abdelmottaleb, Oliwia O Bolimowska, Daniel A Tennant, Andrew R Clark
{"title":"The glucocorticoid dexamethasone inhibits HIF-1α stabilization and metabolic reprogramming in lipopolysaccharide-stimulated primary macrophages.","authors":"Sally A Clayton, Chloe Lockwood, John D O'Neil, Kalbinder K Daley, Sofia Hain, Dina Abdelmottaleb, Oliwia O Bolimowska, Daniel A Tennant, Andrew R Clark","doi":"10.1093/discim/kyad027","DOIUrl":"10.1093/discim/kyad027","url":null,"abstract":"<p><p>Synthetic glucocorticoids are used to treat many chronic and acute inflammatory conditions. Frequent adverse effects of prolonged exposure to glucocorticoids include disturbances of glucose homeostasis caused by changes in glucose traffic and metabolism in muscle, liver, and adipose tissues. Macrophages are important targets for the anti-inflammatory actions of glucocorticoids. These cells rely on aerobic glycolysis to support various pro-inflammatory and antimicrobial functions. Employing a potent pro-inflammatory stimulus in two commonly used model systems (mouse bone marrow-derived and human monocyte-derived macrophages), we showed that the synthetic glucocorticoid dexamethasone inhibited lipopolysaccharide-mediated activation of the hypoxia-inducible transcription factor HIF-1α, a critical driver of glycolysis. In both cell types, dexamethasone-mediated inhibition of HIF-1α reduced the expression of the glucose transporter GLUT1, which imports glucose to fuel aerobic glycolysis. Aside from this conserved response, other metabolic effects of lipopolysaccharide and dexamethasone differed between human and mouse macrophages. These findings suggest that glucocorticoids exert anti-inflammatory effects by impairing HIF-1α-dependent glucose uptake in activated macrophages. Furthermore, harmful and beneficial (anti-inflammatory) effects of glucocorticoids may have a shared mechanistic basis, depending on the alteration of glucose utilization.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 1","pages":"kyad027"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}