{"title":"Anisotropic Laser Performance in an Optically Isotropic Crystal by Phonon Engineering","authors":"Hong Hao, Fei Liang, Yu Fu, Dazhi Lu, Haohai Yu, Huaijin Zhang","doi":"10.1002/adpr.202400149","DOIUrl":"https://doi.org/10.1002/adpr.202400149","url":null,"abstract":"<p>Symmetry is an eternal motif in understanding the characteristics of nearly all the laws and courses of science. The symmetry-breaking in the optical crystal will generate a rich variety of unprecedented physical phenomena and create new functional properties. Herein, the symmetry-breaking in a photon–phonon collaboratively pumped laser, dominated by the anisotropic lattice vibrations is investigated. Using an optically isotropic Nd:YAG crystal as an example, the phonon-assisted electronic transitions accompanied by anisotropic fluorescence emission are observed, beyond the intrinsic structural symmetry ruled by Neumann's principle. For the first time, the phonon-assisted new-wavelength lasers at 1151 and 1166 nm are achieved in Nd:YAG with divergent light polarization, determined by the vibrational direction of involved phonons. These results provide a flexible degree of freedom for photonics by phonon engineering and pave the way to new frontiers in the field of laser generation and manipulation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143905367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andre Perepeliuc, Rajat Gujrati, Phuong Vuong, Vishnu Ottapilakkal, Thi May Tran, Mohamed Bouras, Ali Kassem, Ashutosh Srivastava, Tarik Moudakir, Gilles Patriarche, Paul Voss, Suresh Sundaram, Jean Paul Salvestrini, Abdallah Ougazzaden
{"title":"Novel 2D/3D Heterojunction for UV Light-Emitting Diodes Using Hexagonal Boron Nitride as Hole Injection Layer","authors":"Andre Perepeliuc, Rajat Gujrati, Phuong Vuong, Vishnu Ottapilakkal, Thi May Tran, Mohamed Bouras, Ali Kassem, Ashutosh Srivastava, Tarik Moudakir, Gilles Patriarche, Paul Voss, Suresh Sundaram, Jean Paul Salvestrini, Abdallah Ougazzaden","doi":"10.1002/adpr.202400092","DOIUrl":"https://doi.org/10.1002/adpr.202400092","url":null,"abstract":"<p>The AlGaN materials system has been extensively studied in order to improve the efficiency of UV-B and UV-C light-emitting diodes (LEDs). While progress has been made, significant challenges remain at shorter wavelengths. Most notably, increased Al composition for shorter-wavelength operation results in increased activation energy of Mg dopants, resulting in low p-doping. Although p-doped h-BN, with a bandgap of 5.9 eV, has been proposed as a potential replacement of p-doped AlGaN, there have not been demonstrations of LEDs fabricated from p-doped h-BN/AlGaN heterostructures. Such unique heterostructures combine 2D p-doped h-BN materials with 3D AlGaN materials. Herein, fabrication and characterization of p-doped h-BN/AlGaN multiple quantum wells (MQWs)/n-AlGaN LEDs, demonstrating emission of light at 290 nm corresponding to the AlGaN MQWs, with weaker emission at 262 nm corresponding to the AlGaN barrier, are reported. These results conclusively show hole injection through p-doped h-BN into AlGaN and provide a proof of concept that p-doped h-BN can be an alternative hole injection layer for UV LEDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Resolution Optical Convolutional Neural Networks Using Phase-Change Material-Based Microring Hybrid Waveguides","authors":"Shuguang Zhu, Zhengyang Zhang, Weiwei Tang, Leijun Xu, Li Han, Jie Hong, Yiming Yu, Ziying Li, Qinghua Qin, Changlong Liu, Libo Zhang, Songyuan Ding, Jiale He, Guanhai Li, Xiaoshuang Chen","doi":"10.1002/adpr.202400108","DOIUrl":"https://doi.org/10.1002/adpr.202400108","url":null,"abstract":"<p>\u0000In the More-than-Moore era, the explosive growth of data and information has driven the exploration of alternative non-von Neumann computational paradigms. Photonic neuromorphic computing has emerged as a promising approach, offering high speed, wide bandwidth, and massive parallelism. Herein, a high-resolution optical convolutional neural network (OCNN) is introduced using phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST)-based microring hybrid waveguides. This on-chip optical computing platform integrates GST into photonic devices, enabling versatile programming and in-memory computing capabilities. Central to this platform is a photonic convolutional computational kernel, constructed from photonic switching cells embedded with GST on a microring resonator. This programmable photonic switch leverages the refractive index modulation during the GST phase transition to achieve up to 64 discrete levels of transmission contrast, suitable for representing matrix elements in neural network algorithms with 6-bit resolution. Using these matrix elements, an OCNN capable of performing parallelized image edge detection and digital recognition tasks with high accuracy is demonstrated. The architecture is scalable for large-scale photonic neural networks, offering ultrahigh computational throughput, a compact design, complementary metal-oxide-semiconductor-compatible fabrication, and broad bandwidth.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultraflat, Monolithic, Highly Stable Supercontinuum Source Based on Fluorotellurite Fiber","authors":"Hao Lei, Yadong Jiao, XinSheng Zhao, Kunlin Xie, Junsheng Chen, Wenbo Zhong, Xiaohui Guo, Hongyu Luo, Jianfeng Li, Zhixu Jia, Guanshi Qin","doi":"10.1002/adpr.202400084","DOIUrl":"https://doi.org/10.1002/adpr.202400084","url":null,"abstract":"<p>Supercontinuum (SC) sources covering near-infrared and midinfrared region have attracted enormous interest and found significant applications in tissue imaging, sensing, spectroscopy, defense, and environmental monitoring. Herein, an 8.45 W all-fiber ultraflat SC source with a spectral range of 1.01–4.05 μm using a flat high-power 1.9–2.7 μm SC fiber source to pump a piece of fluorotellurite fiber is presented. The SC spectrum exhibits a 3 dB bandwidth of 1850 nm, ranging from 1870 to 3720 nm, and a 10 dB bandwidth of 2770 nm, ranging from 1120 to 3890 nm. The measured power stability is 0.19% (root mean square) for 5 h of continuous operation, proving the excellent power stability of the system. To the best of knowledge, the SC spectrum exhibits the widest reported 3 and 10 dB bandwidths for 1–4 μm SC sources.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polarization-Controlled Diffractions of Submicron Pillar Arrays of Azo Molecular Glass for Image Recording and Reconstruction","authors":"Zenan Wang, Chungen Hsu, Xiaogong Wang","doi":"10.1002/adpr.202400106","DOIUrl":"https://doi.org/10.1002/adpr.202400106","url":null,"abstract":"<p>Recording and manipulating optical waves with functional structures are crucially important for many applications. Herein, the submicron pillar arrays of an azo molecular glass (IA-Chol) are explored to show functional synergy of a recording medium and a diffractive optical element. The image recording is achieved through the pillar deformation along the electric-field oscillation direction of incident light. When illuminated with a polarized beam, the reconstructed images appear in the first-order diffraction spots of the pillar array with the tailored intensity distributions depending on the states of polarization of the recording beam and the image reconstruction beam. This approach enables several images to be recorded in the adjacent zones of the same pillar array using lights with different polarization directions, and then the images are reconstructed separately or simultaneously upon the polarization directions of the illumination light. Furthermore, the topographic features of the pillar array after the recording are replicated by replica-molding to the surfaces of polydimethylsiloxane (PDMS) slices as negative replicas and transformed to surfaces of poly(methylmethacrylate) (PMMA) films through hot-embossing. The PDMS and PMMA replicas are highly transparent in the visible light range and able to produce the reconstructed images with light in a wide-wavelength extent.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyunseung Jung, Igal Brener, Sadhvikas J. Addamane, Ting Shan Luk, C. Thomas Harris, Ganapathi Subramania, Oleg Mitrofanov
{"title":"InAs Terahertz Metalens Emitter for Focused Terahertz Beam Generation","authors":"Hyunseung Jung, Igal Brener, Sadhvikas J. Addamane, Ting Shan Luk, C. Thomas Harris, Ganapathi Subramania, Oleg Mitrofanov","doi":"10.1002/adpr.202400125","DOIUrl":"https://doi.org/10.1002/adpr.202400125","url":null,"abstract":"<p>Metasurfaces have opened doors to combining multiple photonic functionalities in a single compact device. In particular, the ability to generate short terahertz (THz) pulses with precise wavefront engineering in a single THz metasurface redefined the role metasurfaces can play in THz systems. Here, an InAs metalens emitter which generates and focuses a THz pulse beam is demonstrated using a 130 nm thick InAs metasurface designed as a binary-phase Fresnel zone plate. The THz beam is focused to a spot of ≈430 μm at 1 THz with a short focal length of 5 mm and large numerical aperture of 0.5. Nanoscale InAs Mie resonators comprising the metasurface enable THz generation with an amplitude as high as 20 times compared to plasmonic THz emitters and several times compared to a 1 mm thick ZnTe crystal. This InAs metasurface emitter provides a new paradigm for designing THz imaging, spectroscopy, and communication systems, where THz beam generation and shaping are performed with a single device without compromising the generation efficiency, while eliminating losses and avoiding limitations of phase matching of conventional nonlinear optics approaches.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Osuna Ruiz, Maite Aznarez-Sanado, Pilar Herrera-Plaza, Miguel Beruete
{"title":"Artificial Intelligence-Enhanced Metamaterial Bragg Multilayers for Radiative Cooling","authors":"David Osuna Ruiz, Maite Aznarez-Sanado, Pilar Herrera-Plaza, Miguel Beruete","doi":"10.1002/adpr.202400088","DOIUrl":"https://doi.org/10.1002/adpr.202400088","url":null,"abstract":"<p>A full numerical study combining artificial intelligence (AI) methods and electromagnetic simulation software on a multilayered structure for radiative cooling (RC) is investigated. The original structure is made of SiO<sub>2</sub>/Si nanometer-thick layers that make a Bragg mirror for wavelengths in the solar irradiance window (0.3–4 μm). The structures are then optimized in terms of the calculated net cooling power and characterized via the reflected and absorbed incident light as a function of their structural parameters. This investigation provides with optimal designs of beyond-Bragg, all-dielectric, ultra-broadband mirrors that provide net cooling powers in the order of ≈100 W m<sup>−2</sup>, similar to the best-performing structures in literature. Furthermore, it explains AI's success in producing these structures and enables the analysis of resonant conditions in metal-free multilayers with unconventional layer thickness distributions, offering innovative tools for designing highly efficient structures in RC.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143186619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1 × N All-Logic Optical Switch Based on Polymer Platform Using Multimode Interferometer","authors":"Guoyan Zeng, Daming Zhang, Fei Wang, Xibin Wang, Yuexin Yin","doi":"10.1002/adpr.202400118","DOIUrl":"https://doi.org/10.1002/adpr.202400118","url":null,"abstract":"<p>The compact and broadband optical switch with a large port count is demanded with the increasing communication capacity. In this article, a universal method for modeling the 1 × <i>N</i> switch using multimode interferometer (MMI) through transmission matrixes is proposed. Herein, the reasons for the narrowing of the operating bandwidth switch are analyzed. As a proof of concept, a wide bandwidth 1 × 4 switch, which has an insertion loss lower than 23.7 dB, and a cross talk better than −10 dB at 1550 nm are simulated, designed, and fabricated. The cross talk throughout the C band is lower than −8.5 dB. According to the experimental result, the 1 × 4 switch with four-equal-length modulating arms shows a 32 nm bandwidth for −10 dB cross talk which is 13 times larger than traditional switch. The switch realizes a multi-port logic optical switch by modulation. The 1 × <i>N</i> switch based on the generalized Mach–Zehnder interferometer (GMZI) structure reduce the footprint significantly compared with the 1 × <i>N</i> switch consisting of a 1 × 2 switch cascade. It is believed that 1 × <i>N</i> switch based on GMZI structures is a promising solution to increase integration density.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Designing Tb3+-Sensitized Silica-Nanoparticles-Aided Eu3+-Doped Sr2SiO4 Phosphors with Enhanced Luminescence for Anti-Counterfeiting Applications","authors":"Abinaya Mayavan, Jaysiva Ganesamurthi, Ramachandran Balaji, Santosh Kumar, Satturappan Ravisekaran Srither","doi":"10.1002/adpr.202400130","DOIUrl":"https://doi.org/10.1002/adpr.202400130","url":null,"abstract":"<p>Silica-nanoparticles-assisted Eu<sup>3+</sup>-doped Sr<sub>2</sub>SiO<sub>4</sub> and Tb<sup>3+</sup>- and Eu<sup>3+</sup>-co-doped Sr<sub>2</sub>SiO<sub>4</sub> phosphors, as potential phosphors for anti-counterfeiting application are synthesized via a solid-state reaction technique. The crystal structure, photoluminescence, and decay times are investigated. The characteristic emission of Eu<sup>3+</sup>-doped Sr<sub>2</sub>SiO<sub>4</sub> phosphors exhibits two major peaks at 617 and 595 nm under an excitation wavelength of 394 nm, which corresponds to <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> and <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>1</sub> electron transitions of Eu<sup>3+</sup> ions. Upon co-doping with Tb<sup>3+</sup>, the red emission intensities of the Eu<sup>3+</sup>-doped Sr<sub>2</sub>SiO<sub>4</sub> phosphors are enhanced by 1.78-fold times through an energy-transfer process. The optimized Tb<sup>3+</sup>- and Eu<sup>3+</sup>-co-doped Sr<sub>2</sub>SiO<sub>4</sub> phosphors show a decay time of 0.49 ns and an energy-transfer efficiency of 73%. The calculated International Commission on Illumination value (<i>x</i>, <i>y</i>) and color purity are (0.63, 0.37) and 94%, respectively. Subsequently, a luminescent ink is formulated using the optimized phosphor and tested for efficiency on currency notes. Additionally, a flexible film is fabricated, and its luminescence properties are studied. The formulated ink can serve as security ink in the anti-counterfeiting application.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 4","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch","authors":"Kaveh Delfanazari","doi":"10.1002/adpr.202470029","DOIUrl":"https://doi.org/10.1002/adpr.202470029","url":null,"abstract":"<p><b>2D Layered Superconductors</b>\u0000 </p><p>In article number 2400045, Kaveh Delfanazari showcases methods for the realization of ultrafast terahertz (THz) metamaterial photonic switches on a few nanometer-thick layered high-temperature superconductor van der Waals (vdWs). The metamaterial array offers active modulation of THz amplitude and phase with an ultrafast-picosecond-switching timescale. The device holds promise for the development of future THz communication circuits and systems operating at cryogenic temperatures.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}