Yanmin Zhu, Yuxing Li, Jianqing Huang, Yunping Zhang, Yuen-Wa Ho, James Kar-Hei Fang, Edmund Y. Lam
{"title":"Advanced Optical Imaging Technologies for Microplastics Identification: Progress and Challenges","authors":"Yanmin Zhu, Yuxing Li, Jianqing Huang, Yunping Zhang, Yuen-Wa Ho, James Kar-Hei Fang, Edmund Y. Lam","doi":"10.1002/adpr.202400038","DOIUrl":"10.1002/adpr.202400038","url":null,"abstract":"<p>Global concern about microplastic (MP) and nanoplastic (NP) particles is continuously rising with their proliferation worldwide. Effective identification methods for MP and NP pollution monitoring are highly needed, but due to different requirements and technical challenges, much of the work is still in progress. Herein, the advanced optical imaging systems that are successfully applied or have the potential for MP identification are focused on. Compared with chemical and thermal analyses, optical methods have the unique advantages of being nondestructive and noncontact and allow fast detection without complex sample preprocessing. Furthermore, they are capable of revealing the morphology, anisotropy, and material characteristics of MP for their quick and robust detection. This review aims to present a comprehensive discussion of the relevant optical imaging systems, emphasizing their operating principles, strengths, and drawbacks. Multiple comparisons and analyses among these technologies are conducted in order to provide practical guidelines for researchers. In addition, the combination of optical and other alternative technologies is described and the representative portable MP detection devices are highlighted. Together, they shed light on the prospects for long-term MP pollution monitoring and environmental protection.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jungho Han, Heejoo Jang, Yeonsoo Lim, Seongheon Kim, Jeheon Lee, Young Chul Jun
{"title":"Chiral Emission from Optical Metasurfaces and Metacavities","authors":"Jungho Han, Heejoo Jang, Yeonsoo Lim, Seongheon Kim, Jeheon Lee, Young Chul Jun","doi":"10.1002/adpr.202400060","DOIUrl":"10.1002/adpr.202400060","url":null,"abstract":"<p>Chiral emission exhibiting a large degree of circular polarization (DCP) is important in diverse applications ranging from displays and optical storage to optical communication, bioimaging, and medical diagnostics. Although chiral luminescent materials can generate chiral emissions directly, they frequently suffer from either low DCP or low quantum efficiencies. Achieving high DCP and quantum efficiencies simultaneously remains extremely challenging. This review introduces an alternative approach to chiral emission. Chiral emission with large DCP can be readily achieved by combining conventional achiral emitters with chiral metasurfaces. Particularly, this article focuses on recent experimental and theoretical studies on perovskite metasurfaces and metacavities that employ achiral perovskite materials. First, chiral photoluminescence from extrinsic and intrinsic perovskite metasurfaces is explained together with theoretical discussions on metasurface design based on reciprocity and critical coupling. Chiral photoluminescence from other achiral materials is also explained. Subsequently, chiral electroluminescence from perovskite metacavities and other achiral materials is discussed. Finally, it is concluded with future perspectives. This review provides physical insights into how ideal chiral emission can be realized by optimizing the design of metasurfaces and metacavities. Compact chiral light sources with both near-unity DCP and strong emission intensities can have far-reaching consequences in a wide range of future applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regina Leiner, Lukas Siegwardt, Catarina Ribeiro, Jonas Dörr, Christian Dietz, Robert W. Stark, Markus Gallei
{"title":"Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose","authors":"Regina Leiner, Lukas Siegwardt, Catarina Ribeiro, Jonas Dörr, Christian Dietz, Robert W. Stark, Markus Gallei","doi":"10.1002/adpr.202400091","DOIUrl":"10.1002/adpr.202400091","url":null,"abstract":"<p>\u0000Combining cellulose-based components with functional materials is highly interesting in various research fields due to the improved strength and stiffness of the materials combined with their low weight. Herein, the mechanical properties of opal films are improved by incorporating cellulose fibers and microcrystalline cellulose. This is evidenced by the increase in tensile strength of 162.8% after adding 10 wt% of microcrystalline cellulose. For this purpose, core–shell particles with a rigid, crosslinked polystyrene core and a soft shell of poly(ethyl acrylate) and poly(ethyl acrylate<i>-co</i>-hydroxyethyl methacrylate) are synthesized via starved-feed emulsion polymerization. The synthesized particles’ well-defined shape, morphology, and thermal properties are analyzed using transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry measurements. Free-standing mechanochromic opal films with incorporated cellulose and structural colors are obtained after processing the core–shell particles with cellulose via extrusion and the melt-shear organization technique. The homogeneous distribution of the cellulose within the composite material is investigated using fluorescent-labeled cellulose. The opal film's angle-dependent structural color is demonstrated using reflection spectroscopy.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Schwyn Thöny, Manuel Bärtschi, Marietta Batzer, Manuel Baselgia, Raphael Gmünder, Amit Sharma, Tijmen Vermeij, Xavier Maeder, Stephan Waldner
{"title":"Magnetron Sputter Deposition of Amorphous Silicon–SiO2 Quantized Nanolaminates","authors":"Silvia Schwyn Thöny, Manuel Bärtschi, Marietta Batzer, Manuel Baselgia, Raphael Gmünder, Amit Sharma, Tijmen Vermeij, Xavier Maeder, Stephan Waldner","doi":"10.1002/adpr.202400057","DOIUrl":"10.1002/adpr.202400057","url":null,"abstract":"<p>Quantization effects in nanolaminate structures of oxide materials are proposed and experimentally demonstrated only recently. Herein, the material combination of amorphous silicon and SiO<sub>2</sub> deposited by magnetron sputtering is investigated and it is shown that the quantization effect can be observed indeed. Transmission electron microscopy characterization gives evidence of continuous layers of amorphous silicon and SiO<sub>2</sub> with well-defined interfaces. The deposition process is described and the tunability of the refractive index and the bandgap energy is demonstrated. By doing so, the advantages of this novel material over classical optical materials are shown and feasibility is proved. As an example, a longpass optical interference filter with edge at 720 nm is deposited using quantized nanolaminates as the high and SiO<sub>2</sub> as the low refractive index material. This filter can be deposited successfully with close match to the design. It shows a blocking range throughout the visible spectrum whereas a comparable filter based on SiO<sub>2</sub>–TiO<sub>2</sub> only blocks 500–700 nm.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Pixels to Information: Artificial Intelligence in Fluorescence Microscopy","authors":"Seungjae Han, Joshua Yedam You, Minho Eom, Sungjin Ahn, Eun-Seo Cho, Young-Gyu Yoon","doi":"10.1002/adpr.202300308","DOIUrl":"10.1002/adpr.202300308","url":null,"abstract":"<p>This review explores how artificial intelligence (AI) is transforming fluorescence microscopy, providing an overview of its fundamental principles and recent advancements. The roles of AI in improving image quality and introducing new imaging modalities are discussed, offering a comprehensive perspective on these changes. Additionally, a unified framework is introduced for comprehending AI-driven microscopy methodologies and categorizing them into linear inverse problem-solving, denoising, and nonlinear prediction. Furthermore, the potential of self-supervised learning techniques that address the challenges associated with training the networks are explored, utilizing unlabeled microscopy data to enhance data quality and expand imaging capabilities. It is worth noting that while the specific examples and advancements discussed in this review focus on fluorescence microscopy, the general approaches and theories are directly applicable to other optical microscopy methods.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300308","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arash Darafsheh, Sreekrishna Murty Goddu, Jeffrey Williamson, Tiezhi Zhang, Lee G. Sobotka
{"title":"Radioluminescence Dosimetry in Modern Radiation Therapy","authors":"Arash Darafsheh, Sreekrishna Murty Goddu, Jeffrey Williamson, Tiezhi Zhang, Lee G. Sobotka","doi":"10.1002/adpr.202300350","DOIUrl":"10.1002/adpr.202300350","url":null,"abstract":"<p>Accurate and precise measurement of radiation energy delivered to and absorbed by the patient's tissue is of great importance in radiation therapy (RT) quality assurance. Radioluminescence (RL) dosimetry has shown great potential for high spatiotemporal resolution dose measurement of RT fields. Implementation of efficient RL dosimetry in RT requires multidisciplinary effort and skills in optics, medical physics, radiation physics, electronics, and imaging science. In this review, a wide overview of fundamentals and applications of RL properties of media for RT dosimetry with emphasis on their potential use for multidimensional, small-field, and ultra-high dose rate RT dosimetry is provided.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waygen Thor, Jean-Claude G. Bünzli, Ka-Leung Wong, Peter A. Tanner
{"title":"Shedding Light on Luminescence Lifetime Measurement and Associated Data Treatment","authors":"Waygen Thor, Jean-Claude G. Bünzli, Ka-Leung Wong, Peter A. Tanner","doi":"10.1002/adpr.202400081","DOIUrl":"10.1002/adpr.202400081","url":null,"abstract":"<p>Luminescence lifetime is a crucial parameter in photophysical studies that bears essential physical and chemical information and that is used to quantify a variety of phenomena, from the determination of quenching mechanisms to temperature sensing and bioimaging. The current perception of lifetime measurement is that it is a trivial and fast experiment. However, despite this apparent simplicity, measuring luminescence decay and fitting the obtained data to a suitable model can be far more intricate. In this perspective, the influence of experimental parameters and fitting procedures on the determination of lifetimes are investigated and, through carefully chosen examples, it is shown that large variations, up to 10%, can be induced by varying parameters such as the data acquisition time, the baseline evaluation, or the mathematical fitting model. In order to present to a wider audience, detailed mathematical descriptions are kept out of the manuscript.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mile Gao, Paul L. Burn, Gytis Juška, Almantas Pivrikas
{"title":"Unequilibrated Charge Carrier Mobility in Organic Semiconductors Measured Using Injection Metal–Insulator–Semiconductor Charge Extraction by Linearly Increasing Voltage","authors":"Mile Gao, Paul L. Burn, Gytis Juška, Almantas Pivrikas","doi":"10.1002/adpr.202300325","DOIUrl":"10.1002/adpr.202300325","url":null,"abstract":"<p>The charge carrier mobility in tris(4-carbazoyl-9-ylphenyl)amine (TCTA), a host and hole transport material typically used in organic light-emitting diodes (OLEDs), is measured using charge carrier electrical injection metal–insulator–semiconductor charge extraction by linearly increasing voltage (i-MIS-CELIV). By employing the injection current i-MIS-CELIV method, charge transport at time scales shorter than the transit times typically observed in standard MIS-CELIV is measured. The i-MIS-CELIV technique enables the experimental measurement of unequilibrated and pretrapped charge carriers. Through a comparison of injection and extraction current transients obtained from i-MIS-CELIV and MIS-CELIV, it is concluded that hole trapping is negligible in evaporated neat films of TCTA within the time-scales relevant to the operational conditions of optoelectronic devices, such as OLEDs. Furthermore, photocarrier generation in conjunction with i-MIS-CELIV (photo-i-MIS-CELIV) to quantify the properties of charge injection from the electrode to the semiconductor of the MIS devices is utilized. Based on the photo-i-MIS-CELIV measurements, it is observed that the contact resistance does not limit the injection current at the TCTA/molybdenum oxide/silver interface. Therefore, when TCTA is employed as the hole transport/electron-blocking layer in OLEDs, it does not significantly reduce the injection current and remains compatible with the high injection current densities required for efficient OLED operation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unique Optoelectronic Properties and Applications of Lead-Free Perovskites and Derivatives","authors":"Mingbian Li, Weijun Li, Haotong Wei","doi":"10.1002/adpr.202400095","DOIUrl":"10.1002/adpr.202400095","url":null,"abstract":"<p>The pursuit of lead-free alternatives to lead halide perovskites has gained significant momentum due to the environmental concerns associated with lead toxicity. The adverse effects of lead on human health and the environment have prompted a shift toward developing sustainable and eco-friendly perovskite materials for various optoelectronic devices. This shift is particularly vital in emerging technologies where perovskites play a crucial role, such as solar cells, X-ray detectors, photodetectors, light-emitting diodes (LEDs), etc. Consequently, it is paramount to understand the fundamental properties, synthesis methods, and structural characteristics of lead-free perovskites. This review aims to provide a comprehensive analysis of the intricate relationship between the structures and properties of lead-free perovskites, shedding light on their applications across diverse fields. The focus on environmentally benign, high-performing, and lead-free perovskite materials underscores the urgency and significance of research efforts in driving the development of sustainable and efficient optoelectronic technologies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantinos Papatryfonos, Jean-Christophe Girard, Mingchu Tang, Huiwen Deng, Alwyn J. Seeds, Christophe David, Guillemin Rodary, Huiyun Liu, David R. Selviah
{"title":"Low-Defect Quantum Dot Lasers Directly Grown on Silicon Exhibiting Low Threshold Current and High Output Power at Elevated Temperatures","authors":"Konstantinos Papatryfonos, Jean-Christophe Girard, Mingchu Tang, Huiwen Deng, Alwyn J. Seeds, Christophe David, Guillemin Rodary, Huiyun Liu, David R. Selviah","doi":"10.1002/adpr.202400082","DOIUrl":"10.1002/adpr.202400082","url":null,"abstract":"<p>The direct growth of III-V materials on silicon is a key enabler for developing monolithically integrated lasers, offering substantial potential for ultradense photonic integration in vital communications and computing technologies. However, the III-V/Si lattice and thermal expansion mismatch pose significant hurdles, leading to defects that degrade lasing performance. This study overcomes this challenge, demonstrating InAs/GaAs-on-Si lasers that perform on par with top-tier lasers on native GaAs substrates. This is achieved through a newly developed epitaxial approach comprising a series of rigorously optimized growth strategies. Atomic-resolution scanning tunneling microscopy and spectroscopy experiments reveal exceptional material quality in the active region and elucidate the impact of each growth strategy on defect dynamics. The optimized III-V-on-silicon ridge-waveguide lasers demonstrate a continuous-wave threshold current as low as 6 mA and high-temperature operation reaching 165 °C. At 80 °C, critical for data center applications, they maintain a 12 mA threshold and 35 mW output power. Furthermore, lasers fabricated on both Si and GaAs substrates using identical processes exhibit virtually identical average threshold current. By eliminating the performance limitations associated with the GaAs/Si mismatch, this study paves the way for robust and high-density integration of a broad spectrum of critical III-V photonic technologies into the silicon ecosystem.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}