{"title":"Efficient Pulsed Raman Laser with Wavelength above 2.1 μm Pumped by Noise-Like Pulse","authors":"Meng Wang, Deqin Ouyang, Yu Lin, Yewang Chen, Minqiu Liu, Junqing Zhao, Xing Liu, Shuangchen Ruan","doi":"10.1002/adpr.202300342","DOIUrl":"10.1002/adpr.202300342","url":null,"abstract":"<p>Herein, the efficiently high-power pulsed Raman lasers with wavelength above 2.1 μm are experimentally demonstrated relying on the stimulated Raman scattering. A tailored high-power noise-like pulse (NLP) fiber laser system centered at ≈1953 nm with a maximum output power of ≈10.9 W is served as the pump source. By directly pumping a section of highly Ge-doped silica fiber, the first pulsed Raman laser (centered at≈2139 nm) and the second pulsed Raman laser (centered at ≈2353 nm) with maximum output powers of ≈3.8 and ≈0.25 W are obtained, respectively, which represent the highest output powers of NLP at these wavelength regions, to the best of knowledge. Moreover, a high spectral purity of ≈94.3% of the first Raman laser is obtained, which indicates the significantly potential application of NLP in pulsed Raman laser. The midinfrared NLP fiber laser source will have potential applications in transparent polymer materials processing and midinfrared spectroscopy.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140260338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peisheng Sun, Lai Chen, Bailiang Pan, Linhua Ye, Chengfeng Wang, Junxiang Zhang, Li-Gang Wang
{"title":"2D Exotic Optical Lattice via a Digital-Coding Circular Airy Beam","authors":"Peisheng Sun, Lai Chen, Bailiang Pan, Linhua Ye, Chengfeng Wang, Junxiang Zhang, Li-Gang Wang","doi":"10.1002/adpr.202470007","DOIUrl":"https://doi.org/10.1002/adpr.202470007","url":null,"abstract":"<p>Optical lattices have been widely used from classic to quantum physics. The tunable and scalable fabrication of lattices would be of great significance in lattice-based multipartite applications. In article number 2300280, Junxiang Zhang, Li-Gang Wang, and co-workers propose and demonstrate the fabrication of a 2D exotic optical lattice via spatial crosstalk between a single structured circular Airy beam and a digital spatial mask. This flexible method can steer optical lattices with axis, axial symmetry, and even high orbital kaleidoscope structures, with potential applications in integrated and scalable optical and photonic devices.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qilong Tan, Jie Zhao, Qixin Li, Huan Liu, Bin Dong, Chenguang He, Zhitao Chen, Wen Zhou, Ningyang Liu
{"title":"Planar Compound Eye Lens for Enhanced Light Extraction Efficiency in AlGaN-Based Deep Ultraviolet LEDs","authors":"Qilong Tan, Jie Zhao, Qixin Li, Huan Liu, Bin Dong, Chenguang He, Zhitao Chen, Wen Zhou, Ningyang Liu","doi":"10.1002/adpr.202470008","DOIUrl":"https://doi.org/10.1002/adpr.202470008","url":null,"abstract":"<p>Total internal reflection prevents photons from escaping deep-ultraviolet LED, resulting in serious energy waste and reduced service life. In article number 2300309, Wen Zhou, Ningyang Liu, and co-workers present a method to significantly enhance the light extraction efficiency of LED by reconfiguring the planar compound eye lens utilizing bio-inspired highly optimized features acquired from the praying mantis.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianzhuo Zhao, Qixiu Zhong, Shuzhen Nie, XiaoLong Liu, Hong Xiao, Chenxuan Yin, Fanghui Zhong, Yachen Ke, Fei Li
{"title":"Laser-Induced Breakdown Spectroscopy Online Quantitative Analysis for Laser Processing","authors":"Tianzhuo Zhao, Qixiu Zhong, Shuzhen Nie, XiaoLong Liu, Hong Xiao, Chenxuan Yin, Fanghui Zhong, Yachen Ke, Fei Li","doi":"10.1002/adpr.202300293","DOIUrl":"10.1002/adpr.202300293","url":null,"abstract":"<p>Plasma fluctuations, the uncertainty of laser ablation, and bremsstrahlung limit the identification of online element analysis during laser processing and cause difficulty in achieving concentration results with sufficient accuracy and repeatability. A laser-induced breakdown spectroscopy (LIBS) online monitoring system with plasma spatial filtering and spectral screening is proposed to solve this problem. In this system, the high-frequency ablation noise component of the plasma is eliminated using a specially designed optical Fourier filtering structure, and a spectral screening system based on plasma time waveform monitoring is used to suppress the influence of plasma fluctuations. Without noise filters or algorithm optimizations and based only on the basic internal standard method, the calibration curves of all nine elements in the alloy sample exhibits a Pearson's <i>R</i><sup>2</sup> value ranged from 0.91 to 0.99, with a mean of 0.94. The relative standard deviations are all in the range of 3.5%–8.4% with a mean of 5.4%. The accuracy and repeatability are comparable to those of typical LIBS systems.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 7","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140414356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Broadband Diffractive Neural Networks Enabling Classification of Visible Wavelengths","authors":"Ying Zhi Cheong, Litty Thekkekara, Madhu Bhaskaran, Blanca del Rosal, Sharath Sriram","doi":"10.1002/adpr.202300310","DOIUrl":"10.1002/adpr.202300310","url":null,"abstract":"<p>Diffractive neural networks (DNNs) are emerging as a new machine learning hardware based on optical diffraction with parallel and high-throughput information processing. The optical inputs to DNNs are spatially modulated by propagating through passive diffractive layers that work in succession to achieve an inference. Herein, visible wavelength classification using single- and two-layer DNNs fabricated using direct laser writing is demonstrated. The proposed DNN approach accepts the point spread function of two different wavelengths modeled after a microscope objective as the input and modulates the input field toward the target detector for classification. Of the three models trained to classify different wavelength pairs, the highest performance observed is for the classification of 561 and 785 nm, achieving over 90% accuracy. This work demonstrates the potential of all-optical artificial neural networks for applications requiring visible wavelengths, from visible light beam shaping to spectral analysis and optical imaging.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 6","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140415280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Mc Kearney, Sören Schäfer, Xiaolong Liu, Simon Paulus, Ingo Lebershausen, Behrad Radfar, Ville Vähänissi, Hele Savin, Stefan Kontermann
{"title":"Impact of Pulse Duration on the Properties of Laser Hyperdoped Black Silicon","authors":"Patrick Mc Kearney, Sören Schäfer, Xiaolong Liu, Simon Paulus, Ingo Lebershausen, Behrad Radfar, Ville Vähänissi, Hele Savin, Stefan Kontermann","doi":"10.1002/adpr.202300281","DOIUrl":"https://doi.org/10.1002/adpr.202300281","url":null,"abstract":"<p>The impact of three different pulse durations (100 fs, 1, and 10 ps) on the formation of laser hyperdoped black silicon with respect to surface morphology, sub-bandgap absorptance, the sulfur concentration profile, and the effective minority carrier lifetime after Al<sub>2</sub>O<sub>3</sub> surface passivation is investigated. The current flow behavior is compared through the hyperdoped layer by <i>I–V</i> measurements after hyperdoping with different pulse durations. For conditions that give the same absolute sub-bandgap absorptance, an increase in pulse duration from 100 fs to 10 ps results in a shallower sulfur concentration profile. Findings are explained by an increasing ablation threshold from 0.19 J cm<sup>−2</sup> for a pulse duration of 100 fs to 0.21 J cm<sup>−2</sup> for 1 ps and 0.34 J cm<sup>−2</sup> for 10 ps. The formation of an equally absorbing layer with a shallower doping profile results in a reduction in contact and/or sheet resistance. Despite the higher local sulfur concentration, the samples show no decrease in carrier lifetime measured by quasi-steady-state photoconductance decay on Al<sub>2</sub>O<sub>3</sub> surface-passivated samples. The investigation shows that longer pulses of up to 10 ps during laser hyperdoping of silicon result in advanced layer properties that promise to be beneficial in a potential device application.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 6","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Counter-Propagating Evanescent Illumination Super-Resolution Chip","authors":"Chenlei Pang, Xiaowei Liu, Qianwei Zhang, Zhi Wang, Xiaoyu Yang, Weidong Shen, Xu Liu, Qing Yang","doi":"10.1002/adpr.202300341","DOIUrl":"10.1002/adpr.202300341","url":null,"abstract":"<p>Super-resolution chip (SRC) made of fluorescent polymer film and polygon film waveguide can realize subdiffraction imaging. However, the propagation losses of evanescent waves impose a serious restriction on imaging performance. Meanwhile, the required redundant raw images hinder the imaging speed. Multiple-azimuths evanescent illumination at the same time can efficiently increase the illumination intensity and uniformity, and reduce the number of required raw images. But, the experimental realization is impeded by the complex spatial frequency mixing problem. Herein, an SRC microscopy method with counter-propagating evanescent illumination is demonstrated, which circumvents the influence of complex spatial frequency mixing, and efficiently enhances the reconstructed results. Meanwhile, the proposed method reduces the number of required raw images by half and saves the image acquisition time, which benefits the imaging speed enhancement of the SRC microscopy system and promotes its future practical application.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 6","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140432701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Michael Jöckel, Songhak Yoon, Alexander Frebel, Samuel Meles Neguse, Jürgen Dieter Rossa, Alexander Jürgen Bett, Martin Schubert, Marc Widenmeyer, Benjamin Balke–Grünewald, Anke Weidenkaff
{"title":"Solar Degradation and Stability of Lead-Free Light Absorber Cs2AgBiBr6 in Ambient Conditions","authors":"Dennis Michael Jöckel, Songhak Yoon, Alexander Frebel, Samuel Meles Neguse, Jürgen Dieter Rossa, Alexander Jürgen Bett, Martin Schubert, Marc Widenmeyer, Benjamin Balke–Grünewald, Anke Weidenkaff","doi":"10.1002/adpr.202300269","DOIUrl":"10.1002/adpr.202300269","url":null,"abstract":"<p>As numerous studies on highly efficient perovskite solar cells have been conducted on lead-based light absorbers, such as MAPbI<sub>3</sub> and FAPbI<sub>3</sub>, increasing concerns are rising regarding toxicity and stability issues. One of the most prominent and promising lead-free alternatives is the double-perovskite Cs<sub>2</sub>AgBiBr<sub>6</sub>, which is well-suited for multi-junction solar cells considering its relatively large indirect bandgap of around 1.95–2.05 eV. Despite distinctive reports on its performance under ambient conditions, the demonstrated stability has not yet been conclusively clarified. Within this study, the degradation behavior of Cs<sub>2</sub>AgBiBr<sub>6</sub> single crystals is investigated under different ambient environments, such as AM1.5g solar irradiation, aquatic conditions, and humidity. The corresponding samples are analyzed by using Raman, UV–vis, energy-dispersive X-Ray, and micro-photoluminescence spectroscopies together with X-Ray diffraction. High intrinsic stability of Cs<sub>2</sub>AgBiBr<sub>6</sub> in ambient conditions and severe degradation in aquatic conditions are observed. Furthermore, surface morphology alterations are found during the simulated solar irradiation indicating photo-accelerated degradation behavior. In the results of this study, it is clearly implied that intense research efforts need to be put into sealing the Cs<sub>2</sub>AgBiBr<sub>6</sub> layer in solar cells with the goal of protecting it from humidity and water intrusion simultaneously, therefore avoiding photo-accelerated degradation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139961265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress in Printable Colloidal Photonic Crystals","authors":"Yang Hu, Chenze Qi, Dongpeng Yang, Shaoming Huang","doi":"10.1002/adpr.202300329","DOIUrl":"https://doi.org/10.1002/adpr.202300329","url":null,"abstract":"<p>Printable colloidal photonic crystals (CPCs) with unique photonic bandgaps and elaborate shapes have attracted significant interest due to their characteristics, such as simplicity of fabrication, adjustable structural colors, photobleaching resistance, and stimulus-responsiveness. In this review, strategies for printing CPC patterns, including direct use of CPCs as inks, region-selective modification on responsive (solvent, force, and temperature) CPC papers, and printing combined with lithography, are first summarized. Second, based on the advantages of CPC printing technology, their applications in color displays, coatings, sensors, anticounterfeiting labels, and information storage, are discussed in detail. Finally, the current challenges and outlook regarding CPC printing technology are proposed.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shufang Dong, Kai Qu, Qi Hu, Shaojie Wang, Ke Chen, Yijun Feng
{"title":"Full-Space Janus Meta-Lens for Shared-Aperture Transmission-Reflection-Independent Focusing of Electromagnetic Wave","authors":"Shufang Dong, Kai Qu, Qi Hu, Shaojie Wang, Ke Chen, Yijun Feng","doi":"10.1002/adpr.202300349","DOIUrl":"10.1002/adpr.202300349","url":null,"abstract":"<p>Janus metasurfaces emerge as a promising platform for implementing multiple wave functionalities by fully exploiting the inherent propagation direction of electromagnetic waves. Their out-of-plane asymmetric structures enable different wave functions depending on the propagation direction. Herein, a multiplexed Janus metasurface is proposed, which operates in the microwave region to flexibly manipulate the transmission and reflection wavefronts for same linearly polarized (LP) incidence propagating along the two opposite directions. A meta-lens is constructed to validate the concept of full-space shared-aperture transmission-reflection-independent focusing of electromagnetic (EM) waves, exhibiting four distinct focusing performances. Experiments are conducted in the microwave region that agree well with the simulation results. The proposed full-space Janus metasurface may provide a platform for asymmetric imaging, multichannel information processing, and encrypted communication.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}