Spatially Controlled Optical Vortex Generation Using Low-Loss Antimony Telluride Metasurfaces

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chengsen Yang, Shuguang Zhu, Huishan Ma, Weiwei Tang, Yiming Yu, Zexing Zheng, Jie Hong, Changlong Liu, Songyuan Ding, Jiale He, Guanhai Li, Xiaoshuang Chen
{"title":"Spatially Controlled Optical Vortex Generation Using Low-Loss Antimony Telluride Metasurfaces","authors":"Chengsen Yang,&nbsp;Shuguang Zhu,&nbsp;Huishan Ma,&nbsp;Weiwei Tang,&nbsp;Yiming Yu,&nbsp;Zexing Zheng,&nbsp;Jie Hong,&nbsp;Changlong Liu,&nbsp;Songyuan Ding,&nbsp;Jiale He,&nbsp;Guanhai Li,&nbsp;Xiaoshuang Chen","doi":"10.1002/adpr.202400179","DOIUrl":null,"url":null,"abstract":"<p>Optical vortex beams, endowed with orbital angular momentum (OAM) due to their helical wavefronts, are essential for advancements in optical manipulation, quantum computing, and communication technologies. Existing methods for generating vortex beams often struggle with issues such as low efficiency, limited scalability, and rigid control over beam properties. To address these limitations, we have developed a novel vortex beam generator utilizing a plasmonic metasurface constructed from the antimony telluride (Sb<sub>2</sub>Te<sub>3</sub>). Distinct from traditional plasmonic materials, Sb<sub>2</sub>Te<sub>3</sub> offers significantly lower optical losses in the visible spectrum, enhancing both efficiency and beam quality. By integrating the Pancharatnam–Berry phase mechanism with Sb<sub>2</sub>Te<sub>3</sub>'s low-loss characteristics, the approach facilitates unprecedented control over the beam's propagation trajectory and OAM mode. This design allows not only customizable beam trajectories but also manipulation of OAM for controlled topological charge evolution, which is beneficial for scalable and integrated photonic systems. The demonstrated vortex beam, using Sb<sub>2</sub>Te<sub>3</sub>, paves the way for more compact, efficient vortex beam generation, broadening their potential applications in photonic technologies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400179","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical vortex beams, endowed with orbital angular momentum (OAM) due to their helical wavefronts, are essential for advancements in optical manipulation, quantum computing, and communication technologies. Existing methods for generating vortex beams often struggle with issues such as low efficiency, limited scalability, and rigid control over beam properties. To address these limitations, we have developed a novel vortex beam generator utilizing a plasmonic metasurface constructed from the antimony telluride (Sb2Te3). Distinct from traditional plasmonic materials, Sb2Te3 offers significantly lower optical losses in the visible spectrum, enhancing both efficiency and beam quality. By integrating the Pancharatnam–Berry phase mechanism with Sb2Te3's low-loss characteristics, the approach facilitates unprecedented control over the beam's propagation trajectory and OAM mode. This design allows not only customizable beam trajectories but also manipulation of OAM for controlled topological charge evolution, which is beneficial for scalable and integrated photonic systems. The demonstrated vortex beam, using Sb2Te3, paves the way for more compact, efficient vortex beam generation, broadening their potential applications in photonic technologies.

Abstract Image

Abstract Image

Abstract Image

利用低损耗碲化锑超表面产生空间控制光涡旋
光涡旋光束由于其螺旋波前而具有轨道角动量(OAM),对于光学操纵、量子计算和通信技术的进步至关重要。现有的产生涡旋光束的方法经常面临效率低、可扩展性有限和光束特性控制严格等问题。为了解决这些限制,我们开发了一种利用碲化锑(Sb2Te3)构成的等离子体超表面的新型涡旋光束发生器。与传统的等离子体材料不同,Sb2Te3在可见光谱中提供了显着降低的光学损耗,提高了效率和光束质量。通过将Pancharatnam-Berry相位机制与Sb2Te3的低损耗特性相结合,该方法可以实现对光束传播轨迹和OAM模式的前所未有的控制。该设计不仅可以定制光束轨迹,还可以操纵OAM以控制拓扑电荷演化,这有利于可扩展和集成的光子系统。使用Sb2Te3的涡旋光束为更紧凑、高效的涡旋光束产生铺平了道路,拓宽了它们在光子技术中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信