AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2073854
Helen M M Waddell, Matthew K Moore, Morgan A Herbert-Olsen, Martin K Stiles, Rexson D Tse, Sean Coffey, Regis R Lamberts, Hamish M Aitken-Buck
{"title":"Identifying sex differences in predictors of epicardial fat cell morphology.","authors":"Helen M M Waddell, Matthew K Moore, Morgan A Herbert-Olsen, Martin K Stiles, Rexson D Tse, Sean Coffey, Regis R Lamberts, Hamish M Aitken-Buck","doi":"10.1080/21623945.2022.2073854","DOIUrl":"https://doi.org/10.1080/21623945.2022.2073854","url":null,"abstract":"<p><p>Predictors of overall epicardial adipose tissue deposition have been found to vary between males and females. Whether similar sex differences exist in epicardial fat cell morphology is currently unknown. This study aimed to determine whether epicardial fat cell size is associated with different clinical measurements in males and females. Fat cell sizes were measured from epicardial, paracardial, and appendix adipose tissues of post-mortem cases (<i>N</i>= 118 total, 37 females). Epicardial, extra-pericardial, and visceral fat volumes were measured by computed tomography from a subset of cases (<i>N</i>= 70, 22 females). Correlation analyses and stepwise linear regression were performed to identify predictors of fat cell size in males and females. Median fat cell sizes in all depots did not differ between males and females. Body mass index (BMI) and age were independently predictive of epicardial, paracardial, and appendix fat cell sizes in males, but not in females. Epicardial and appendix fat cell sizes were associated with epicardial and visceral fat volumes, respectively, in males only. In females, paracardial fat cell size was associated with extra-pericardial fat volume, while appendix fat cell size was associated with BMI only. No predictors were associated with epicardial fat cell size in females at the univariable or multivariable levels. To conclude, no clinical measurements were useful surrogates of epicardial fat cell size in females, while BMI, age, and epicardial fat volume were independent, albeit weak, predictors in males only.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"325-334"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10248091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2148886
Elena Kempf, Kathrin Landgraf, Tim Vogel, Ulrike Spielau, Robert Stein, Matthias Raschpichler, Jürgen Kratzsch, Wieland Kiess, Juraj Stanik, Antje Körner
{"title":"Associations of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> expression in adipose tissue cells with obesity-related alterations in corresponding circulating levels and adipose tissue function in children.","authors":"Elena Kempf, Kathrin Landgraf, Tim Vogel, Ulrike Spielau, Robert Stein, Matthias Raschpichler, Jürgen Kratzsch, Wieland Kiess, Juraj Stanik, Antje Körner","doi":"10.1080/21623945.2022.2148886","DOIUrl":"https://doi.org/10.1080/21623945.2022.2148886","url":null,"abstract":"<p><p>Components of the growth hormone (GH) axis, such as insulin-like growth factor-1 (IGF-1), IGF-1 binding protein-3 (IGFBP-3), GH receptor (GHR) and GH-binding protein (GHBP), regulate growth and metabolic pathways. Here, we asked if serum levels of these factors are altered with overweight/obesity and if this is related to adipose tissue (AT) expression and/or increased fat mass. Furthermore, we hypothesized that expression of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> is associated with AT function. Serum GHBP levels were increased in children with overweight/obesity throughout childhood, while for IGF-1 levels and the IGF-1/IGFBP-3 molar ratio obesity-related elevations were detectable until early puberty. Circulating levels did not correlate with AT expression of these factors, which was decreased with overweight/obesity. Independent from obesity, expression of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> was related to AT dysfunction,and increased insulin levels. Serum GHBP was associated with liver fat percentage and transaminase levels. We conclude that obesity-related elevations in serum GHBP and IGF-1 are unlikely to be caused by increased AT mass and elevations in GHBP are more closely related to liver status in children. The diminished AT expression of these factors with childhood obesity may contribute to early AT dysfunction and a deterioration of the metabolic state.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"630-642"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2149121
Hea Jung Yang, Jong-Ho Kim, Jung Hee Shim, Chan Yeong Heo
{"title":"Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes <i>in vitro</i> and <i>in vivo</i>.","authors":"Hea Jung Yang, Jong-Ho Kim, Jung Hee Shim, Chan Yeong Heo","doi":"10.1080/21623945.2022.2149121","DOIUrl":"https://doi.org/10.1080/21623945.2022.2149121","url":null,"abstract":"<p><p>Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. <i>In vivo</i> experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"643-652"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/d2/KADI_11_2149121.PMC9718552.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10680029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2123097
Na Li, Yunfei Chen, Haiyan Wang, Jing Li, Robert Chunhua Zhao
{"title":"SPRY4 promotes adipogenic differentiation of human mesenchymal stem cells through the MEK-ERK1/2 signaling pathway.","authors":"Na Li, Yunfei Chen, Haiyan Wang, Jing Li, Robert Chunhua Zhao","doi":"10.1080/21623945.2022.2123097","DOIUrl":"https://doi.org/10.1080/21623945.2022.2123097","url":null,"abstract":"<p><p>Obesity is a chronic metabolic disorder characterized by the accumulation of excess fat in the body. Preventing and controlling obesity by inhibiting the adipogenic differentiation of mesenchymal stem cells (MSCs) and thereby avoiding the increase of white adipose tissue is safe and effective. Recent studies have demonstrated that Sprouty proteins (SPRYs) are involved in cell differentiation and related diseases. However, the role and mechanism of SPRY4 in MSC adipogenic differentiation remain to be explored. Here, we found that SPRY4 positively correlates with the adipogenic differentiation of human adipose-derived MSCs (hAMSCs). Via gain- and loss-of-function experiments, we demonstrated that SPRY4 promotes hAMSC adipogenesis both in vitro and in vivo. Mechanistically, SPRY4 functioned by activating the MEK-ERK1/2 pathway. Our findings provide new insights into a critical role for SPRY4 as a regulator of adipogenic differentiation, which may illuminate the underlying mechanisms of obesity and suggest the potential of SPRY4 as a novel treatment option.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"588-600"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of functional fat organoid from rat superficial fascia.","authors":"Yanfei Zhang, Yuanyuan Zhang, Yingyue Dong, Tongsheng Chen, Guoheng Xu","doi":"10.1080/21623945.2022.2072446","DOIUrl":"https://doi.org/10.1080/21623945.2022.2072446","url":null,"abstract":"<p><p>The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually \"fat organoids\". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.<b>Abbreviations</b>: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"287-300"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10347455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-05-09DOI: 10.1080/21623945.2022.2073804
Zhijuan Ge, Y. Shang, Wen-die Wang, Ji-gang Yang, Shu-zhen Chen
{"title":"Brown adipocytes promote epithelial mesenchymal transition of neuroblastoma cells by inducing PPAR-γ/UCP2 expression","authors":"Zhijuan Ge, Y. Shang, Wen-die Wang, Ji-gang Yang, Shu-zhen Chen","doi":"10.1080/21623945.2022.2073804","DOIUrl":"https://doi.org/10.1080/21623945.2022.2073804","url":null,"abstract":"ABSTRACT Neuroblastoma (NB) is an embryonic malignant tumour of the sympathetic nervous system, and current research shows that activation of brown adipose tissue accelerates cachexia in cancer patients. However, the interaction between brown adipose tissues and NB remains unclear. The study aimed to investigate the effect of brown adipocytes in the co-culture system on the proliferation and migration of NB cells. Brown adipocytes promoted the proliferation and migration of Neuro-2a, BE(2)-M17, and SH-SY5Y cells under the co-culture system, with an increase of the mRNA and protein levels of UCP2 and PPAR-γ in NB cells. The UCP2 inhibitor genipin or PPAR-γ inhibitor T0090709 inhibited the migration of NB cells induced by brown adipocytes. Genipin or siUCP2 upregulated the expression of E-cadherin, and downregulated the expression of N-cadherin and vimentin in NB cells. We suggest that under co-cultivation conditions, NB cells can activate brown adipocytes, which triggers changes in various genes and promotes the proliferation and migration of NB cells. The PPAR-γ/UCP2 pathway is involved in the migration of NB cells caused by brown adipocytes.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"335 - 345"},"PeriodicalIF":3.3,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47577183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-05-09DOI: 10.1080/21623945.2022.2075129
P. V. van Krieken, J. Roos, P. Fischer-Posovszky, S. Wueest, D. Konrad
{"title":"Oncostatin M promotes lipolysis in white adipocytes","authors":"P. V. van Krieken, J. Roos, P. Fischer-Posovszky, S. Wueest, D. Konrad","doi":"10.1080/21623945.2022.2075129","DOIUrl":"https://doi.org/10.1080/21623945.2022.2075129","url":null,"abstract":"ABSTRACT Oncostatin M (OSM) is a member of the glycoprotein 130 cytokine family that is involved in chronic inflammation and increased in adipose tissue under obesity and insulin resistance. OSM was shown to inhibit adipogenesis, suppress browning, and contribute to insulin resistance in cultured white adipocytes. In contrast, OSM may have a metabolically favourable role on adipocytes in mouse models of obesity and insulin resistance. However, a putative role of OSM in modulating lipolysis has not been investigated in detail to date. To address this, cultured white adipocytes of mouse or human origin were exposed to 10 or 100 ng/ml of OSM for various time periods. In murine 3T3-L1 cells, OSM stimulation directly activated hormone-sensitive lipase (HSL) and other players of the lipolytic machinery, and dose-dependently increased free fatty acid and glycerol release. In parallel, OSM attenuated insulin-mediated suppression of lipolysis and induced phosphorylation of serine-residues on the insulin receptor substrate-1 (IRS1) protein. Key experiments were verified in a second murine and a human adipocyte cell line. Inhibiton of extracellular signal-regulated kinase (ERK)-1/2 activation, abolished OSM-mediated HSL phosphorylation and lipolysis. In conclusion, OSM signalling directly promotes lipolysis in white adipocytes in an ERK1/2-dependent manner.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"315 - 324"},"PeriodicalIF":3.3,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42158852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the different characteristics between omental preadipocytes and differentiated white adipocytes using bioinformatics methods","authors":"Xinyu Yang, Lu Li, Canming Xu, Meichen Pi, Changhua Wang, Yemin Zhang","doi":"10.1080/21623945.2022.2063471","DOIUrl":"https://doi.org/10.1080/21623945.2022.2063471","url":null,"abstract":"ABSTRACT Obesity is emerging as an epidemiological issue, being associated with the onset and progress of various metabolism-related disorders. Obesity is characterized by the white adipose expansion, which encounters white adipocyte hypertrophy and hyperplasia. White adipocyte hyperplasia is defined as adipogenesis with the increase in the number of the white adipocytes from the preadipocytes. Adipogenesis contributes to distributing excess triglycerides among the smaller newly formed adipocytes, reducing the number of hypertrophic adipocytes and secreting anti-inflammatory factor. Therefore, adipogenesis is emerging as a new therapeutic target for the treatment of obesity. In the present study, for a better understanding of the contribution of the alteration of the omental differentiated white adipocytes to the systemic metabolic disorders, we downloaded the mRNA expression profiles from GEO database GSE1657, 328 differentially expressed genes (DEGs) were screened between the undifferentiated preadipocytes (UNDIF) and omental differentiated white adipocytes (DIF). The contributions of the upregulated and downregulated DEGs to the system were performed via the Gene Ontology (GO) analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Protein–Protein Interaction (PPI) network, respectively. The potential contribution of the whole altered genes in the differentiated white adipocytes was explored with the performance of Gene Set Enrichment Analysis (GSEA), especially on the GO analysis, KEGG analysis, hallmark analysis, oncogenic analysis and related miRNA analysis. The output of the current study will shed light on the new targets for the treatment of obesity and obesity-related disorders.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"227 - 238"},"PeriodicalIF":3.3,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46133356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-04-28DOI: 10.1080/21623945.2022.2069311
Lusha Li, Liangli Chen, Li Yu, Junlu Zhang, Liying Chen
{"title":"Identification of FOXM1 and CXCR4 as key genes in breast cancer prevention and prognosis after intermittent energy restriction through bioinformatics and functional analyses","authors":"Lusha Li, Liangli Chen, Li Yu, Junlu Zhang, Liying Chen","doi":"10.1080/21623945.2022.2069311","DOIUrl":"https://doi.org/10.1080/21623945.2022.2069311","url":null,"abstract":"ABSTRACT We explored potential biomarkers and molecular mechanisms regarding breast cancer (BC) risk reduction after intermittent energy restriction (IER) and further explored the association between IER and BC prognosis. We identified differentially expressed genes (DEGs) in breast tissues before and after IER by analyzing the expression profile from GEO. Then, enrichment analysis was used to identify important pathways of DEGs and hub genes were selected from PPI network. After that, GEPIA, ROC, and KM plotter were used to explore the preventive and prognostic value of hub genes. It was found that FOXM1 and CXCR4 were highly expressed in BC tissues and associated with the worse prognosis. FOXM1 and CXCR4 were down-regulated after IER , which meant that FOXM1 and CXCR4 might be the most important key genes for reducing the risk and improving prognosis of BC after IER . ROC curve indicated that FOXM1 and CXCR4 also had the predictive value for BC. Our study contributed to a better understanding of the specific mechanisms in protective effects of IER on BC and provided a new approach to improve the prognosis of BC, which might provide partial guidance for the subsequent development of more effective treatments and prevention strategies.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"301 - 314"},"PeriodicalIF":3.3,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46080002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-04-17DOI: 10.1080/21623945.2022.2063015
Sen Li, Xiaolin Zong, Liheng Zhang, Luya Li, Jianxin Wu
{"title":"A chromatin accessibility landscape during early adipogenesis of human adipose-derived stem cells","authors":"Sen Li, Xiaolin Zong, Liheng Zhang, Luya Li, Jianxin Wu","doi":"10.1080/21623945.2022.2063015","DOIUrl":"https://doi.org/10.1080/21623945.2022.2063015","url":null,"abstract":"ABSTRACT Obesity has become a serious global public health problem; a deeper understanding of systemic change of chromatin accessibility during human adipogenesis contributes to conquering obesity and its related diseases. Here, we applied the ATAC-seq method to depict a high-quality genome‐wide time-resolved accessible chromatin atlas during adipogenesis of human adipose-derived stem cells (hASCs). Our data indicated that the chromatin accessibility drastic dynamically reformed during the adipogenesis of hASCs and 8 h may be the critical transition node of adipogenesis chromatin states from commitment phase to determination phase. Moreover, upon adipogenesis, we also found that the chromatin accessibility of regions related to anti-apoptotic, angiogenic and immunoregulatory gradually increased, which is beneficial to maintaining the health of adipose tissue (AT). Finally, the chromatin accessibility changed significantly in intronic regions of peroxisome proliferator‐activated receptor γ during adipogenesis, and these regions were rich in transcription factors binding motifs that were exposed for further regulation. Overall, we systematically analysed the complex change of chromatin accessibility occurring in the early stage of adipogenesis and deepened our understanding of human adipogenesis. Furthermore, we also provided a good reference data resource of genome‐wide chromatin accessibility for future studies on human adipogenesis.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"239 - 249"},"PeriodicalIF":3.3,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45442723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}