Adipocyte最新文献

筛选
英文 中文
An optimised protocol for the investigation of insulin signalling in a human cell culture model of adipogenesis. 胰岛素信号在脂肪生成的人类细胞培养模型中研究的优化方案。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2023-12-01 DOI: 10.1080/21623945.2023.2179339
Jonathan M Gamwell, Keanu Paphiti, Leanne Hodson, Fredrik Karpe, Katherine E Pinnick, Marijana Todorčević
{"title":"An optimised protocol for the investigation of insulin signalling in a human cell culture model of adipogenesis.","authors":"Jonathan M Gamwell, Keanu Paphiti, Leanne Hodson, Fredrik Karpe, Katherine E Pinnick, Marijana Todorčević","doi":"10.1080/21623945.2023.2179339","DOIUrl":"10.1080/21623945.2023.2179339","url":null,"abstract":"<p><p>While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue. By reducing the length of exposure to adipogenic hormones, in combination with a physiological glucose concentration (5 mM), and the provision of exogenous fatty acids (reflecting typical dietary fatty acids), we were able to restore early insulin signalling events and glucose uptake, which were impaired by extended use of hormones and a high glucose concentration, respectively. Furthermore, the addition of exogenous fatty acids greatly increased the storage of triglycerides and removed the artificial demand to synthesize all fatty acids by <i>de novo</i> lipogenesis. Thus, modifying the adipogenic cocktail can enhance functional aspects of human adipocytes <i>in vitro</i> and is an important variable to consider prior to <i>in vitro</i> investigations into adipocyte biology.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2179339"},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9463287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimized method for Oil Red O staining with the salicylic acid ethanol solution. 水杨酸乙醇溶液对油红O染色的优化方法。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2023-12-01 DOI: 10.1080/21623945.2023.2179334
Junbao Du, Li Zhao, Quan Kang, Yun He, Yang Bi
{"title":"An optimized method for Oil Red O staining with the salicylic acid ethanol solution.","authors":"Junbao Du, Li Zhao, Quan Kang, Yun He, Yang Bi","doi":"10.1080/21623945.2023.2179334","DOIUrl":"10.1080/21623945.2023.2179334","url":null,"abstract":"<p><p>Oil Red O (ORO) staining is a commonly used experimental technique to detect lipid content in cells or tissues. Freshly prepared ORO in 60% isopropanol is the most widely used method at present. However, isopropanol is volatile and harmful to the human body. It will also affect the interpretation of the results due to the formation of crystals and non-specific diffuse staining. In this paper, by screening and validation, we report a salicylic acid ethanol solution (containing 50% ethanol, 5%-10% salicylic acid) for the preparation of ORO solution, which has a better staining effect on lipid staining in cells and tissues, with a clean background and short dyeing time. What's more, this ORO solution is non-toxic, convenient to prepare, and can be stored for a long time. Therefore, it is reliable, easy to operate, and can be widely popularized and applied in laboratories.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2179334"},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9423400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative bioinformatics analysis to screen key genes and signalling pathways related to ferroptosis in obesity. 综合生物信息学分析,筛选与肥胖脱铁症相关的关键基因和信号通路。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2023-12-01 Epub Date: 2023-10-25 DOI: 10.1080/21623945.2023.2264442
Ming-Ke Li, Chang Xing, Lan-Qing Ma
{"title":"Integrative bioinformatics analysis to screen key genes and signalling pathways related to ferroptosis in obesity.","authors":"Ming-Ke Li, Chang Xing, Lan-Qing Ma","doi":"10.1080/21623945.2023.2264442","DOIUrl":"10.1080/21623945.2023.2264442","url":null,"abstract":"<p><p>Ferroptosis is closely associated with the development of disease in the body. However, there are few studies on ferroptosis-related genes (FRGs) in obesity. Therefore, key genes and signalling pathways related to ferroptosis in obesity were screened. Briefly, the RNA sequencing data of obesity and the non-obesity human samples and 259 FRGs were downloaded from GEO database and FerrDb database, respectively. The obesity-related module genes were firstly screened by weighted gene co-expression network analysis (WGCNA) and crossed with differentially expressed genes (DEGs) of obesity/normal samples and FRGs to obtain obesity-ferroptosis related (OFR) DEGs. Then, key genes were screened by PPI network. Next, the correlation of key genes and differential immune cells between obesity and normal samples were further explored by immune infiltration analysis. Finally, microRNA (miRNA)-messenger RNA (mRNA), transcription factor (TF)-mRNA networks and drug-gene interaction networks were constructed. As a result, 17 OFR DEGs were obtained, which mainly participated in processes such as lipid metabolism or adipocyte differentiation. The 4 key genes, <i>STAT3</i>, <i>IL-6</i>, <i>PTGS2</i>, and <i>VEGFA</i>, constituted the network. M2 macrophages, T cells CD8, mast cells activated, and T cells CD4 memory resting had significant differences between obesity and normal samples. Moreover, 51 miRNAs and 164 drugs were predicted for 4 key genes. All in all, this study has screened 4 FRGs, including <i>IL-6</i>, <i>VEGFA</i>, <i>STAT3</i>, and <i>PTGS2</i>, in obesity patients.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2264442"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ba/1f/KADI_12_2264442.PMC10601513.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification. IL-27通过增强葡萄糖摄取和脂肪酸酯化来增加白色脂肪细胞的能量储存。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2023-12-01 Epub Date: 2023-11-10 DOI: 10.1080/21623945.2023.2276346
Chiara Scaffidi, Annie Srdic, Daniel Konrad, Stephan Wueest
{"title":"IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification.","authors":"Chiara Scaffidi, Annie Srdic, Daniel Konrad, Stephan Wueest","doi":"10.1080/21623945.2023.2276346","DOIUrl":"10.1080/21623945.2023.2276346","url":null,"abstract":"<p><p>The cytokine interleukin (IL)-27 has been reported to induce thermogenesis in white adipocytes. However, it remains unknown whether IL-27-mediated adipocyte energy dissipation is paralleled by an elevated energy supply from lipids and/or carbohydrates. We hypothesized that IL-27 increases lipolysis and glucose uptake in white adipocytes, thereby providing substrates for thermogenesis. Unexpectedly, we found that treatment of 3T3-L1 adipocytes with IL-27 reduced intra- and extracellular free fatty acid (FFA) concentrations and that phosphorylation of hormone-sensitive lipase (HSL) was not affected by IL-27. These results were confirmed in subcutaneous white adipocytes. Further, application of IL-27 to 3T3-L1 adipocytes increased intracellular triglyceride (TG) content but not mitochondrial ATP production nor expression of enzymes involved in beta-oxidation indicating that elevated esterification rather than oxidation causes FFA disappearance. In addition, IL-27 significantly increased GLUT1 protein levels, basal glucose uptake as well as glycolytic ATP production, suggesting that increased glycolytic flux due to IL-27 provides the glycerol backbone for TG synthesis. In conclusion, our findings suggest IL-27 increases glucose uptake and TG deposition in white adipocytes.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2276346"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix density regulates adipocyte phenotype. 基质密度调节脂肪细胞表型。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2023-12-01 Epub Date: 2023-10-10 DOI: 10.1080/21623945.2023.2268261
Alexander Ky, Atticus J McCoy, Carmen G Flesher, Nicole E Friend, Jie Li, Kore Akinleye, Christopher Patsalis, Carey N Lumeng, Andrew J Putnam, Robert W O'Rourke
{"title":"Matrix density regulates adipocyte phenotype.","authors":"Alexander Ky, Atticus J McCoy, Carmen G Flesher, Nicole E Friend, Jie Li, Kore Akinleye, Christopher Patsalis, Carey N Lumeng, Andrew J Putnam, Robert W O'Rourke","doi":"10.1080/21623945.2023.2268261","DOIUrl":"10.1080/21623945.2023.2268261","url":null,"abstract":"<p><p>Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2268261"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/54/KADI_12_2268261.PMC10566443.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT). 运动对棕色脂肪组织(BAT)活化和白色脂肪组织(WAT)褐变的调节作用及其机制。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2023-12-01 Epub Date: 2023-10-09 DOI: 10.1080/21623945.2023.2266147
Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang
{"title":"Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT).","authors":"Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang","doi":"10.1080/21623945.2023.2266147","DOIUrl":"10.1080/21623945.2023.2266147","url":null,"abstract":"<p><p>Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"2266147"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/7d/KADI_12_2266147.PMC10563630.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41118749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relationship between adipose tissue RAAS activity and the risk factors of prediabetes: a systematic review and meta-analysis. 脂肪组织RAAS活性与前驱糖尿病危险因素的关系:一项系统综述和荟萃分析。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2023-12-01 DOI: 10.1080/21623945.2023.2249763
Bongeka Cassandra Mkhize, Palesa Mosili, Phikelelani Sethu Ngubane, Andile Khathi
{"title":"The relationship between adipose tissue RAAS activity and the risk factors of prediabetes: a systematic review and meta-analysis.","authors":"Bongeka Cassandra Mkhize, Palesa Mosili, Phikelelani Sethu Ngubane, Andile Khathi","doi":"10.1080/21623945.2023.2249763","DOIUrl":"10.1080/21623945.2023.2249763","url":null,"abstract":"<p><strong>Methods: </strong>This systematic review was developed in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-2020) standards. This was accomplished by searching clinical MeSH categories in MEDLINE with full texts, EMBASE, Web of Science, PubMed, Cochrane Library, Academic Search Complete, ICTRP and ClinicalTrial.gov. Reviewers examined all the findings and selected the studies that satisfied the inclusion criteria. The Downs and Black Checklist was used to assess for bias, followed by a Review Manager v5. A Forrest plot was used for the meta-analysis and sensitivity analysis. The protocol for this review was registered with PROSPERO CRD42022320252.</p><p><strong>Results: </strong>The clinical studies (<i>n</i> = 2) comprised 1065 patients with prediabetes and 1103 normal controls. The RAAS measurements were completed in the adipose tissue. The RAAS components, renin and aldosterone were higher in the prediabetic (PD) compared to the control [mean difference (MD) = 0.16, 95% CI 0.16 (-0.13, 0.45), <i>p</i> = 0.25]. Furthermore, the PD group demonstrated higher triglycerides mean difference [MD = 7.84, 95% CI 7.84 (-9.84, 25.51), <i>p</i> = 0.38] and increased BMI [MD = 0.13, 95% CI 0.13 (-0.74, 0.99), <i>p</i> = 0.77] compared to the control. The overall quality of the studies was fair with a median score and range of 17 (16-18).</p><p><strong>Conclusion: </strong>The current study highlights the relationship between increased BMI, RAAS and insulin resistance which is a predictor of prediabetes. The renin is slightly higher in the prediabetes group without any statistical significance, aldosterone is rather negatively associated with prediabetes which may be attributed to the use of anti-hypertensive treatment.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2249763"},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/ec/KADI_12_2249763.PMC10472858.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10200472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of insulin receptors in high fat and high glucose diet mice with insulin resistance. 胰岛素抵抗高脂高糖饮食小鼠胰岛素受体的变化。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2023-12-01 Epub Date: 2023-10-13 DOI: 10.1080/21623945.2023.2264444
Chen Lei, Jing Wang, Xin Li, Yuan-Yuan Mao, Jian-Qun Yan
{"title":"Changes of insulin receptors in high fat and high glucose diet mice with insulin resistance.","authors":"Chen Lei, Jing Wang, Xin Li, Yuan-Yuan Mao, Jian-Qun Yan","doi":"10.1080/21623945.2023.2264444","DOIUrl":"10.1080/21623945.2023.2264444","url":null,"abstract":"<p><p>This study aimed to observe the expression of insulin-signaling molecules in different organs of mice with insulin resistance (IR). Firstly, mice were fed a high-fat and high-sugar diet (HF group) to establish an IR model, and the controls (NF group) were fed with a normal diet. Next, the weight, fasting blood glucose (FBG), serum insulin and insulin tolerance were detected. Pathological changes of liver tissues were observed by H&E staining. The expressions of INSR, IRS-1 and IRS-2 in the liver, skeletal muscle and ovary were measured by qRT-PCR and western blotting. As a result, compared with the NF group, the HF group mice had increased weight, FBG, insulin and IR index after 6-week of feeding as well as a worse performance in the insulin tolerance test and H&E staining showed fatty liver-like changes after 12-week of feeding, exhibited lower expression of INSR, IRS-1 and IRS-2 in the liver of mice at 6 and 12 weeks. The expression of INSR and IRS-1 in skeletal muscle tissues exhibited the same trend, while those in ovary organs showed the opposite trend. These results suggested that the insulin signaling alters in the liver, skeletal muscle and ovary organs with the progress of IR.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2264444"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In vitro studies of the renin-angiotensin system in human adipose tissue/adipocytes and possible relationship to SARS-CoV-2: a scoping review. 人脂肪组织/脂肪细胞肾素-血管紧张素系统的体外研究及其与SARS-CoV-2的可能关系:范围综述
IF 3.5 4区 生物学
Adipocyte Pub Date : 2023-12-01 DOI: 10.1080/21623945.2023.2194034
Ryan Ting, Heidi Dutton, Alexander Sorisky
{"title":"<i>In vitro</i> studies of the renin-angiotensin system in human adipose tissue/adipocytes and possible relationship to SARS-CoV-2: a scoping review.","authors":"Ryan Ting, Heidi Dutton, Alexander Sorisky","doi":"10.1080/21623945.2023.2194034","DOIUrl":"10.1080/21623945.2023.2194034","url":null,"abstract":"<p><p>The renin-angiotensin system (RAS) operates within adipose tissue. Obesity-related changes can affect adipose RAS, predisposing to hypertension, type 2 diabetes, and possibly severe COVID-19. We evaluated the <i>in vitro</i> research on human adipose RAS and identified gaps in the literature. Medline (Ovid), Embase (Ovid), Web of Science, Scopus, and 1findr were searched to identify relevant studies. Fifty primary studies met our inclusion criteria for analysis. Expression of RAS components (<i>n</i> = 14), role in differentiation (<i>n</i> = 14), association with inflammation (<i>n</i> = 15) or blood pressure (<i>n</i> = 7) were investigated. We found (1) obesity-related changes in RAS were frequently studied (30%); (2) an upswing of articles investigating adipose ACE-2 expression since the COVID-19 pandemic; (3) a paucity of papers on AT2R and Ang (1-7)/MasR which counterbalance Ang II/ART1; (4) weight loss lowered adipose ACE-2 mRNA expression; and (5) angiotensin receptor blockers (ARBs) reduced deleterious effects of angiotensin II. Overall, these studies link Ang II/ATR1 signalling to impaired adipogenesis and a pro-inflammatory dysfunctional adipose tissue, with ATR1 blockade limiting these responses. ACE-2 may mitigate Ang II effects by converting it to Ang(1-7) which binds MasR. More work is needed to understand adipose RAS in various pathologic states such as obesity and COVID-19 infection.T.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2194034"},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9286679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysosomal acid lipase promotes endothelial proliferation in cold-activated adipose tissue. 溶酶体酸性脂肪酶促进冷活化脂肪组织内皮细胞增殖。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2021.2013416
Alexander W Fischer, Michelle Y Jaeckstein, Joerg Heeren
{"title":"Lysosomal acid lipase promotes endothelial proliferation in cold-activated adipose tissue.","authors":"Alexander W Fischer,&nbsp;Michelle Y Jaeckstein,&nbsp;Joerg Heeren","doi":"10.1080/21623945.2021.2013416","DOIUrl":"https://doi.org/10.1080/21623945.2021.2013416","url":null,"abstract":"<p><p>Oxidative tissues such as brown adipose tissue and muscle internalize large amounts of circulating lipids and glucose as energy source. Endothelial cells (ECs) provide a platform for regulated transport and processing of blood-borne nutrients. Next to this role, it has become recognized that intercellular crosstalk between ECs and underlying parenchymal cells is indispensable for maintenance of tissue homoeostasis. Here, we comment on our recent observation that capillary ECs in thermogenic adipose tissues take up and metabolize entire triglyceride-rich lipoprotein (TRL) particles in response to cold exposure. This process is dependent on CD36, lipoprotein lipase (LPL) and lysosomal acid lipase (LAL). Remarkably, loss of LAL specifically in endothelial cells results in impaired endothelial proliferation and diminished thermogenic adaptation. Mechanistically, cell culture experiments indicate that LAL-mediated TRL processing leads to the generation of reactive oxygen species, which in turn activate hypoxia-induced factor (HIF)-mediated proliferative responses. In the current manuscript, we provide <i>in vivo</i> evidence that LAL-deficiency impairs proliferation of endothelial cells in thermogenic adipose tissue. In addition, we show uptake of nanoparticle-labelled TRL and LAL expression in cardiac endothelial cells, suggesting a physiological function of endothelial lipoprotein processing not only in thermogenic adipose tissue but also in cardiac muscle.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"28-33"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8726628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39764606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信