Marcelo P. D'Amado, João Bourbon de Albuquerque II, Will Bezold, Brett D. Crist, James L. Cook
{"title":"Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures","authors":"Marcelo P. D'Amado, João Bourbon de Albuquerque II, Will Bezold, Brett D. Crist, James L. Cook","doi":"10.1016/j.stlm.2024.100146","DOIUrl":"10.1016/j.stlm.2024.100146","url":null,"abstract":"<div><h3>Introduction</h3><p>Distal radius fractures make up around 20% of adult fractures, varying in type and severity, thus requiring different treatments. Cast immobilization is effective in indicated fractures, but is associated with several disadvantages such that 3D-printed orthoses (3D-Braces) have been introduced as a potentially advantageous alternative. The present study was designed to test the hypothesis that short-arm 3D-printed Polylactic Acid (PLA) orthoses would provide superior biomechanical properties when compared to plaster of Paris short-arm casts for immobilization of distal radial fractures.</p></div><div><h3>Methods</h3><p>Modified mannequin forearms were utilized as human models for the creation of both the circular casts and the 3D Braces. A total of five plaster cast prototypes were produced, based on a standard cylindrical plaster cast application technique used in the treatment of distal radius fractures, and another five samples were 3D printed braces. Each sample was then subjected to a three-point bend load test, using an Instron 68SC2 testing machine, and the data was collected and exported to an Excel spreadsheet and analyzed using SPSS Statistics version 26 (IBM Corp., Armonk, N.Y., USA).</p></div><div><h3>Results</h3><p>The 3D-Braces can withstand significantly higher forces at yield and maximum force, implying they may offer superior mechanical stability. Moreover, our findings indicated a higher strain at yield for the 3D-Braces compared to conventional plaster casts.</p></div><div><h3>Conclusions</h3><p>3D-printed Polylactic Acid short-arm orthoses demonstrated superior biomechanical properties when compared to plaster of Paris short-arm casts designed for immobilization of distal radial fractures. Taken together with data from previous studies, preclinical evidence suggests that PLA 3D-Braces can effectively maintain distal radius fracture alignment and stability with potential advantages over traditional casts with respect to biomechanical properties as well as post-fabrication adjustment, patient hygiene, comfort, and daily activities.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000055/pdfft?md5=8a390b6bdf9988a12c7fab951f4c4e67&pid=1-s2.0-S2666964124000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anisha Duvvi, Evan Yates, Shterna Seligson, Jaspreet Singh, Cei Lim Kim, Lara Musser, Gregory McWhir, Getnet Tolera, Sonja Jauhal, Mauricio Gonzalez Arias, Hossein Kalantari, Roger Chirurgi, Getaw Worku Hassen
{"title":"A hybrid 3D-printed model for lateral canthotomy simulation","authors":"Anisha Duvvi, Evan Yates, Shterna Seligson, Jaspreet Singh, Cei Lim Kim, Lara Musser, Gregory McWhir, Getnet Tolera, Sonja Jauhal, Mauricio Gonzalez Arias, Hossein Kalantari, Roger Chirurgi, Getaw Worku Hassen","doi":"10.1016/j.stlm.2024.100150","DOIUrl":"https://doi.org/10.1016/j.stlm.2024.100150","url":null,"abstract":"<div><h3>Background</h3><p>Ocular injuries are common complaints in the emergency department (ED). In certain instances, a hematoma builds up behind the eyeball and can lead to increased intraocular pressure (IOP), restricting circulation and threatening vision. A lateral canthotomy can be vision-saving if performed appropriately and quickly. Unfortunately, not every physician in the ED is familiar with the procedure.</p></div><div><h3>Objective</h3><p>Our objective was to build a hybrid 3D-printed model to simulate lateral canthotomy, hence improving physicians’ skills in performing the procedure.</p></div><div><h3>Method</h3><p>Using a MakerBot 3D printer, a hemi-cranium and a sphere imitating the eyeball were printed. The model is supplemented with silicon skin and other materials. A hematoma is created using chocolate pudding. We present a low-fidelity, long-lasting hybrid model for lateral canthotomies. This model simulates the pathology, anatomy, and basic technical steps required to perform the procedure.</p></div><div><h3>Conclusion</h3><p>This low-fidelity simulator helps to improve procedural skills and retention through repeated practice.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000092/pdfft?md5=e95f7a52e25984d83e6330279347b6ba&pid=1-s2.0-S2666964124000092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of 3D printing in medicine: A review","authors":"Chensong Dong, Marko Petrovic, Ian J. Davies","doi":"10.1016/j.stlm.2024.100149","DOIUrl":"https://doi.org/10.1016/j.stlm.2024.100149","url":null,"abstract":"<div><p>3D printing, or additive manufacturing, has transformed various industries with its layer-by-layer fabrication approach. In medicine, 3D printing, or biofabrication, has seen significant advancements, particularly in the creation of patient-specific medical models and custom-made drug tablets. Bioprinting, a key aspect of biofabrication, encompasses three approaches: biomimicry, autonomous self-assembly, and microtissues, each with its unique advantages and disadvantages. This comprehensive review explores the merits and limitations of these bioprinting approaches and outlines the three main phases of the entire bioprinting process: pre-processing, processing, and post-processing. By enhancing patients’ quality of life, reducing healthcare costs, and tapping into the global medical device market, biofabrication technologies hold immense promise for the future of medicine. This literature review focuses on the applications of 3D printing technologies in creating medical devices, including bone tissues, joint tissues, 3D printed tablets, and medical models.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000080/pdfft?md5=15cfa452bb14e83f9962e24405463f3e&pid=1-s2.0-S2666964124000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Prem Ananth , Naidu Dhanpal Jayram , Kandasamy Muthusamy
{"title":"3D-printed Biphasic Calcium Phosphate Scaffold to augment cytocompatibility evaluation for load-bearing implant applications","authors":"K. Prem Ananth , Naidu Dhanpal Jayram , Kandasamy Muthusamy","doi":"10.1016/j.stlm.2024.100148","DOIUrl":"https://doi.org/10.1016/j.stlm.2024.100148","url":null,"abstract":"<div><p>In this work, we developed and analyzed a biphasic calcium phosphate (BC<sub>P</sub>) bioceramic for bone regeneration using stereolithography (SLA). The SLA method is a promising additive manufacturing (AM) technique capable of creating BCp parts with high accuracy and efficiency. However, the ceramic suspension used in SLA exhibits significantly higher viscosity and is not environmentally friendly. Therefore, adequate preparation of a suspension with low viscosity and high solid loading is essential. In this paper, we optimized the effects of surfactant doses and solid loading on the BCp slurry, and initially examined the process parameters of photocuring, debinding, and sintering. The utilization of 9 wt % Disperbyk (BYK) with a 40 vol % loading of BCp bioceramics exhibited a reasonably low viscosity of 8.9 mPa·s at a shear level of 46.5 s<sup>−1</sup>. Functional and structural analyses confirmed that BCp was retained after photocuring and subsequent treatment, which were incorporated into the BYK dispersion. The 3D printed objects with different sintered temperatures, specifically at 1100 °C, 1200 °C, and 1300 °C, were further optimized. Additionally, the surface roughness, porosity, and mechanical properties of BCp green parts were systematically investigated. Most importantly, <em>in vitro</em> analysis of cell attachment, differentiation, and red alizarin analysis could support the application of bone regeneration.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000079/pdfft?md5=3da89ec7743eb77b19fd4fb98a128884&pid=1-s2.0-S2666964124000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-automatic design concept of 3D-printed individualized template for interstitial brachytherapy of vaginal tumors","authors":"Shuhei Sekii , Kento Morita , Ryuichi Yada , Kayoko Tsujino","doi":"10.1016/j.stlm.2024.100147","DOIUrl":"https://doi.org/10.1016/j.stlm.2024.100147","url":null,"abstract":"<div><p>We aimed to introduce a novel semi-automatic design approach for fabricating individualized, three-dimensional printed template dedicated to interstitial brachytherapy in vaginal tumor treatment. The central component of this concept involved the development of a cylindrical template with strategically placed tunnels to optimize applicator placement. These tunnels originated from the template's base, meticulously designed to prevent any potential overlap or interference. For precise tumor localization, we employed a method wherein the tumor's mask image was projected onto a spherical surface. Subsequently, we employed the k-means algorithm to segment the terminal points, with each cluster's center serving as the terminal point. To ensure the optimal starting point for the tunnels, we utilized the conjugate gradient method, considering the following factors: inter-starting point distance, angles between tunnels, inter-tunnel distance, and the starting point's position relative to the base of the template (inside or outside). We established a semi-automatic design paradigm for fabricating three-dimensional printed template tailored for vaginal brachytherapy. While our initial findings are promising, further comprehensive investigations are imperative to validate the clinical efficacy of this innovative concept.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"14 ","pages":"Article 100147"},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000067/pdfft?md5=381afcfb59d7a28295b6c0056e8891d1&pid=1-s2.0-S2666964124000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amalgamation of nano and 3-D printing technology: Design, optimization, and assessment","authors":"Hardik Rana, Dipika Chavada, Vaishali Thakkar","doi":"10.1016/j.stlm.2024.100144","DOIUrl":"10.1016/j.stlm.2024.100144","url":null,"abstract":"<div><p>Personalized medicine is the need of today's era, as one therapy does not fit all. The study aims to develop a novel patient-customized formulation using the integration of 3-D printing and Nanotechnology concepts. Valsartan (VLS) was chosen as a model drug for the study due to its poor bioavailability and dose-dependent toxicity. The Polycaprolactone (PCL)-VLS bionanoparticles (PCVBio) were formulated using a modified solvent evaporation method, inculcating the approach of Quality by Design (QbD). The amount of PCL and Polaxomer-188 (PLX) significantly influenced the PCVBio properties, which central composite design (CCD) ascertained. The results of DSC confirm the conversion of crystalline to amorphous structure. The zeta potential, PDI, and particle size ensure stability and nano size. The optimized PCVBio was further loaded into the multi-channel 3-D printed tablet (M3DPT). M3DPT was formulated by the fused deposition modeling method. The process parameters,% infill, and layer height significantly influenced the tablet's quality. The PCVbio M3DPT was able to release the VLS up to 12 h. The optimal formulation was found stable and effective. The new conjugated advanced formulation will improve the effectiveness, safety, and patient adherence. It unlocks the new research direction toward improving patients' lives.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000031/pdfft?md5=763ab9035eadb4656cb5f134de4b763f&pid=1-s2.0-S2666964124000031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Lei Teng , Yoke Rung Wong , Peggy Poh Hoon Lim , Duncan Angus McGrouther
{"title":"An adjustable and customised finger splint to improve mallet finger treatment compliance and outcomes","authors":"Shi Lei Teng , Yoke Rung Wong , Peggy Poh Hoon Lim , Duncan Angus McGrouther","doi":"10.1016/j.stlm.2024.100142","DOIUrl":"10.1016/j.stlm.2024.100142","url":null,"abstract":"<div><h3>Objective</h3><p>Tendinous mallet finger injuries are normally treated conservatively by finger splinting, whereby the injured finger is immobilised in extension to allow the ruptured extensor tendon to heal. However, current splints including the Stack and Zimmer reported high failure rates of almost 50 %. Reasons are attributed to poor splint fit, skin complications and discomfort which cause non-compliance to splint regimens. To address the above mentioned issues, we designed and developed a 3D printed adjustable and customised finger splint.</p></div><div><h3>Participants and interventions</h3><p>The 3D printed finger splint, Zimmer and Stack splint were worn by 24 healthy volunteers on their middle fingers for 24 h.</p></div><div><h3>Main outcome measures</h3><p>The finger extension angle, splint fit, splint comfort and skin maceration were assessed via angle measurement and subjects’ feedback using a questionnaire.</p></div><div><h3>Results</h3><p>The 3D printed finger splint was capable to maintain the distal interphalangeal joint at an extended angle of 8.1° However, 70.8 % of the subjects reported that the 3D printed finger splint shifted or came off wholly during 24 h of wear. This proportion is higher compared to the Zimmer (45.8 %) and the Stack (37.5 %). While 91.7 % of the subjects were satisfied with the ease of wearing and removing the 3D printed finger splint, subjects experienced difficulty performing work and washing activities owing to the design and material.</p></div><div><h3>Conclusion</h3><p>Our proposed design fulfils its function of holding the fingertip in extension and improves ease of application. The design of 3D printed finger splint could be further refined to provide better splint fit and comfort, so as to achieve better treatment compliance.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000018/pdfft?md5=6170706bec2d4641b8733208f0a3d61c&pid=1-s2.0-S2666964124000018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139457156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcelo P. D'Amado, João Bourbon de Albuquerque, W. Bezold, Brett D. Crist, James L. Cook
{"title":"Biomechanical Comparison of Traditional Plaster Cast and 3D-Printed Orthosis for External Coaptation of Distal Radius Fractures","authors":"Marcelo P. D'Amado, João Bourbon de Albuquerque, W. Bezold, Brett D. Crist, James L. Cook","doi":"10.1016/j.stlm.2024.100146","DOIUrl":"https://doi.org/10.1016/j.stlm.2024.100146","url":null,"abstract":"","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"21 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Collier , Michelle Leech , Laure Marignol , John Gaffney , Ralph Leijenaar , Ciaran Malone
{"title":"Creating a 3D-printed pelvic phantom to explore the impact of Magnetic Resonance (MR) scanner noise in radiomics analysis, a technical note.","authors":"Richard Collier , Michelle Leech , Laure Marignol , John Gaffney , Ralph Leijenaar , Ciaran Malone","doi":"10.1016/j.stlm.2024.100143","DOIUrl":"10.1016/j.stlm.2024.100143","url":null,"abstract":"<div><p>Reproducibility of radiomics features necessitates that scanner noise be considered prior to feature extraction. Phantom research provides the opportunity for such ‘ground truth’ measurements, without the additional complication of patient-related factors. The aim of this technical note was to create a 3D printed Magnetic Resonance Imaging (MRI)-compatible pelvic phantom that can be used for subsequent analysis of the impact of scanner noise on the reproducibility of radiomics features.</p><p>A 3D printed phantom of a male pelvis was created using fused deposition modelling technology. It was 3D printed using the high density MRI-compatible acrylonitrile butadiene styrene (ABS). The ‘negative’ mould created was then filled with silicone, and the prostate gland and femoral heads were also simulated.</p><p>We successfully created an MRI-compatible 3D printed pelvic phantom, with a test scan. The phantom will subsequently be utilised to determine the impact of MRI scanner noise on radiomics feature reproducibility.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266696412400002X/pdfft?md5=59d77aaebd690ce9c87e3924132fd3c6&pid=1-s2.0-S266696412400002X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139457376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel G. Rosen , Evandro Sobroza de Mello , Sadhna Dhingra , Sanford M. Dawsey , Joe Knapper , Richard Bowman , Sharmila Anandasabapathy
{"title":"Utility of a low-cost 3-D printed microscope for evaluating esophageal biopsies","authors":"Daniel G. Rosen , Evandro Sobroza de Mello , Sadhna Dhingra , Sanford M. Dawsey , Joe Knapper , Richard Bowman , Sharmila Anandasabapathy","doi":"10.1016/j.stlm.2024.100145","DOIUrl":"10.1016/j.stlm.2024.100145","url":null,"abstract":"<div><p>In this manuscript we assessed the utility of a low-cost 3D printed microscope to evaluate esophageal biopsies. We conducted a comparative analysis between the traditional microscope and our 3-D printed microscope, utilizing a set of esophageal biopsy samples obtained from patients undergoing screening endoscopy. Two pathologists independently examined 30 esophageal biopsies by light microscopy and digital images obtained using a low-cost 3D printed microscope (Observer 1 and 2). The glass slide consensus diagnosis was compared to the findings of 2 additional pathologist who independently just reviewed the digital images (Observer 3 and 4). The intra-observer agreement was substantial to almost perfect for observer 1 (k:0.64) and 2 (k:0.84). All four observers had 100 % sensitivity and negative predictive value, whereas specificity ranged from 59 % to 100 % and positive predictive value ranged from 21 % to 100 %. The PPV and specificity were lower for the two Observers (3 and 4) who just examined the digital images. Overall, our results suggest that telepathology may be used with high sensitivity and specificity, utilizing the pictures produced by our 3D-printed microscope.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"13 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000043/pdfft?md5=20599d8cd70420b473c241a29607bbed&pid=1-s2.0-S2666964124000043-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139453563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}