应用于面部女性化手术的下颌骨截骨三维手术规划方法

Q3 Medicine
Valeria Marin-Montealegre , Amelia R. Cardinali , Valentina Ríos Borras , M. Camila Ceballos-Santa , Jhon Jairo Osorio-Orozco , Iris V. Rivero
{"title":"应用于面部女性化手术的下颌骨截骨三维手术规划方法","authors":"Valeria Marin-Montealegre ,&nbsp;Amelia R. Cardinali ,&nbsp;Valentina Ríos Borras ,&nbsp;M. Camila Ceballos-Santa ,&nbsp;Jhon Jairo Osorio-Orozco ,&nbsp;Iris V. Rivero","doi":"10.1016/j.stlm.2024.100164","DOIUrl":null,"url":null,"abstract":"<div><p>Our proposed method uses a three-dimensional (3D) measurement approach that focuses mainly on the lower jaw from basal, lateral, and frontal views applied to the volumetric skull model derived from a computed tomography (CT) of the head. Likewise, we discuss the geometrical features and clinical considerations involved in the 3D biomodeling of the surgical osteotomy. The workflow that allowed this virtual planning to be developed was composed of medical imaging processing software, data extraction software from images, and statistical software that allows the creation and generation of curve-fitting (nonlinear regression) graphs from data. Thirty-two (32) anatomical points were positioned, sixteen (16) measurements were taken, and two-dimensional (2D) sketches in three views (frontal, lateral, and inferior) were generated to overlap in a 3D environment, which informed the cutting of the desired bone segments. Implementing a nonlinear regression curve-fitting on the contours of the original jaws allowed optimal planning of the osteotomy. Desired cutting shapes were extrapolated for the front view by third-order equations, while for the side and bottom views, log-normal distribution curves and second-order polynomial curves were used, respectively. The reduction in the mandibular volume was between 6.55 and 10.27 %, with two of the most important measurements related to vertical reduction in the lateral views and the difference to determine gonion reduction.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"15 ","pages":"Article 100164"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000237/pdfft?md5=b0f37c1538460218ba29a8b5c46b7b30&pid=1-s2.0-S2666964124000237-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D surgical planning method for lower jaw osteotomies applied to facial feminization surgery\",\"authors\":\"Valeria Marin-Montealegre ,&nbsp;Amelia R. Cardinali ,&nbsp;Valentina Ríos Borras ,&nbsp;M. Camila Ceballos-Santa ,&nbsp;Jhon Jairo Osorio-Orozco ,&nbsp;Iris V. Rivero\",\"doi\":\"10.1016/j.stlm.2024.100164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our proposed method uses a three-dimensional (3D) measurement approach that focuses mainly on the lower jaw from basal, lateral, and frontal views applied to the volumetric skull model derived from a computed tomography (CT) of the head. Likewise, we discuss the geometrical features and clinical considerations involved in the 3D biomodeling of the surgical osteotomy. The workflow that allowed this virtual planning to be developed was composed of medical imaging processing software, data extraction software from images, and statistical software that allows the creation and generation of curve-fitting (nonlinear regression) graphs from data. Thirty-two (32) anatomical points were positioned, sixteen (16) measurements were taken, and two-dimensional (2D) sketches in three views (frontal, lateral, and inferior) were generated to overlap in a 3D environment, which informed the cutting of the desired bone segments. Implementing a nonlinear regression curve-fitting on the contours of the original jaws allowed optimal planning of the osteotomy. Desired cutting shapes were extrapolated for the front view by third-order equations, while for the side and bottom views, log-normal distribution curves and second-order polynomial curves were used, respectively. The reduction in the mandibular volume was between 6.55 and 10.27 %, with two of the most important measurements related to vertical reduction in the lateral views and the difference to determine gonion reduction.</p></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":\"15 \",\"pages\":\"Article 100164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666964124000237/pdfft?md5=b0f37c1538460218ba29a8b5c46b7b30&pid=1-s2.0-S2666964124000237-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666964124000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的方法采用三维(3D)测量方法,主要侧重于下颌骨的基底、侧面和正面视图,并应用于头部计算机断层扫描(CT)得出的头骨体积模型。同样,我们还讨论了手术截骨的三维生物建模所涉及的几何特征和临床考虑因素。开发虚拟规划的工作流程由医学影像处理软件、图像数据提取软件和统计软件组成,其中统计软件可根据数据创建和生成曲线拟合(非线性回归)图。对 32 个解剖点进行了定位,进行了 16 次测量,生成了三个视图(正面、侧面和下部)的二维草图,并在三维环境中进行了重叠,为切割所需的骨段提供了依据。对原始颌骨轮廓进行非线性回归曲线拟合,可优化截骨规划。正视图的理想切割形状是通过三阶方程推算出来的,而侧视图和底视图则分别使用了对数正态分布曲线和二阶多项式曲线。下颌骨体积缩小了 6.55% 到 10.27%,其中两个最重要的测量值与侧视图中的垂直缩小和确定性腺缩小的差值有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D surgical planning method for lower jaw osteotomies applied to facial feminization surgery

Our proposed method uses a three-dimensional (3D) measurement approach that focuses mainly on the lower jaw from basal, lateral, and frontal views applied to the volumetric skull model derived from a computed tomography (CT) of the head. Likewise, we discuss the geometrical features and clinical considerations involved in the 3D biomodeling of the surgical osteotomy. The workflow that allowed this virtual planning to be developed was composed of medical imaging processing software, data extraction software from images, and statistical software that allows the creation and generation of curve-fitting (nonlinear regression) graphs from data. Thirty-two (32) anatomical points were positioned, sixteen (16) measurements were taken, and two-dimensional (2D) sketches in three views (frontal, lateral, and inferior) were generated to overlap in a 3D environment, which informed the cutting of the desired bone segments. Implementing a nonlinear regression curve-fitting on the contours of the original jaws allowed optimal planning of the osteotomy. Desired cutting shapes were extrapolated for the front view by third-order equations, while for the side and bottom views, log-normal distribution curves and second-order polynomial curves were used, respectively. The reduction in the mandibular volume was between 6.55 and 10.27 %, with two of the most important measurements related to vertical reduction in the lateral views and the difference to determine gonion reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信