Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures

Q3 Medicine
Marcelo P. D'Amado, João Bourbon de Albuquerque II, Will Bezold, Brett D. Crist, James L. Cook
{"title":"Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures","authors":"Marcelo P. D'Amado,&nbsp;João Bourbon de Albuquerque II,&nbsp;Will Bezold,&nbsp;Brett D. Crist,&nbsp;James L. Cook","doi":"10.1016/j.stlm.2024.100146","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Distal radius fractures make up around 20% of adult fractures, varying in type and severity, thus requiring different treatments. Cast immobilization is effective in indicated fractures, but is associated with several disadvantages such that 3D-printed orthoses (3D-Braces) have been introduced as a potentially advantageous alternative. The present study was designed to test the hypothesis that short-arm 3D-printed Polylactic Acid (PLA) orthoses would provide superior biomechanical properties when compared to plaster of Paris short-arm casts for immobilization of distal radial fractures.</p></div><div><h3>Methods</h3><p>Modified mannequin forearms were utilized as human models for the creation of both the circular casts and the 3D Braces. A total of five plaster cast prototypes were produced, based on a standard cylindrical plaster cast application technique used in the treatment of distal radius fractures, and another five samples were 3D printed braces. Each sample was then subjected to a three-point bend load test, using an Instron 68SC2 testing machine, and the data was collected and exported to an Excel spreadsheet and analyzed using SPSS Statistics version 26 (IBM Corp., Armonk, N.Y., USA).</p></div><div><h3>Results</h3><p>The 3D-Braces can withstand significantly higher forces at yield and maximum force, implying they may offer superior mechanical stability. Moreover, our findings indicated a higher strain at yield for the 3D-Braces compared to conventional plaster casts.</p></div><div><h3>Conclusions</h3><p>3D-printed Polylactic Acid short-arm orthoses demonstrated superior biomechanical properties when compared to plaster of Paris short-arm casts designed for immobilization of distal radial fractures. Taken together with data from previous studies, preclinical evidence suggests that PLA 3D-Braces can effectively maintain distal radius fracture alignment and stability with potential advantages over traditional casts with respect to biomechanical properties as well as post-fabrication adjustment, patient hygiene, comfort, and daily activities.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000055/pdfft?md5=8a390b6bdf9988a12c7fab951f4c4e67&pid=1-s2.0-S2666964124000055-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Distal radius fractures make up around 20% of adult fractures, varying in type and severity, thus requiring different treatments. Cast immobilization is effective in indicated fractures, but is associated with several disadvantages such that 3D-printed orthoses (3D-Braces) have been introduced as a potentially advantageous alternative. The present study was designed to test the hypothesis that short-arm 3D-printed Polylactic Acid (PLA) orthoses would provide superior biomechanical properties when compared to plaster of Paris short-arm casts for immobilization of distal radial fractures.

Methods

Modified mannequin forearms were utilized as human models for the creation of both the circular casts and the 3D Braces. A total of five plaster cast prototypes were produced, based on a standard cylindrical plaster cast application technique used in the treatment of distal radius fractures, and another five samples were 3D printed braces. Each sample was then subjected to a three-point bend load test, using an Instron 68SC2 testing machine, and the data was collected and exported to an Excel spreadsheet and analyzed using SPSS Statistics version 26 (IBM Corp., Armonk, N.Y., USA).

Results

The 3D-Braces can withstand significantly higher forces at yield and maximum force, implying they may offer superior mechanical stability. Moreover, our findings indicated a higher strain at yield for the 3D-Braces compared to conventional plaster casts.

Conclusions

3D-printed Polylactic Acid short-arm orthoses demonstrated superior biomechanical properties when compared to plaster of Paris short-arm casts designed for immobilization of distal radial fractures. Taken together with data from previous studies, preclinical evidence suggests that PLA 3D-Braces can effectively maintain distal radius fracture alignment and stability with potential advantages over traditional casts with respect to biomechanical properties as well as post-fabrication adjustment, patient hygiene, comfort, and daily activities.

用于桡骨远端骨折外固定的传统石膏模型与 3D 打印矫形器的生物力学比较
导言桡骨远端骨折约占成人骨折的 20%,其类型和严重程度各不相同,因此需要不同的治疗方法。石膏固定对指示性骨折是有效的,但也存在一些缺点,因此三维打印矫形器(3D-Braces)作为一种潜在的有利替代品已被引入。本研究旨在验证一个假设,即在固定桡骨远端骨折时,与巴黎石膏短臂石膏相比,3D 打印聚乳酸(PLA)短臂矫形器具有更优越的生物力学特性。根据用于治疗桡骨远端骨折的标准圆柱形石膏应用技术,共制作了五个石膏模型原型,另外五个样品是三维打印支架。然后使用 Instron 68SC2 试验机对每个样品进行三点弯曲负载试验,收集数据并导出到 Excel 电子表格,并使用 SPSS 统计 26 版(IBM 公司,美国纽约州阿蒙克市)进行分析。结论与用于桡骨远端骨折固定的巴黎石膏短臂模型相比,3D 打印聚乳酸短臂矫形器具有更优越的生物力学特性。结合之前的研究数据,临床前证据表明,聚乳酸三维支架能有效保持桡骨远端骨折的对位和稳定性,在生物力学特性、制作后调整、患者卫生、舒适度和日常活动方面比传统石膏具有潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信