Aging brain最新文献

筛选
英文 中文
Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function 脑特异性牛磺酸病损害外周骨骼肌的完整性和功能
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100110
Bryan Alava , Gabriela Hery , Silvana Sidhom , Miguel Gutierrez-Monreal , Stefan Prokop , Karyn A. Esser , Jose Abisambra
{"title":"Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function","authors":"Bryan Alava ,&nbsp;Gabriela Hery ,&nbsp;Silvana Sidhom ,&nbsp;Miguel Gutierrez-Monreal ,&nbsp;Stefan Prokop ,&nbsp;Karyn A. Esser ,&nbsp;Jose Abisambra","doi":"10.1016/j.nbas.2024.100110","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100110","url":null,"abstract":"<div><p>Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000057/pdfft?md5=9013d5b5fc8f1c0ab274640c4767554a&pid=1-s2.0-S2589958924000057-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal data are crucial for identifying superagers 纵向数据对确定超级用户至关重要
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100118
Lars Nyberg
{"title":"Longitudinal data are crucial for identifying superagers","authors":"Lars Nyberg","doi":"10.1016/j.nbas.2024.100118","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100118","url":null,"abstract":"","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000148/pdfft?md5=968a6dd9072eda1a79318250dc1f7ad2&pid=1-s2.0-S2589958924000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia TMS 衍生的短传入抑制可判别未患痴呆症的老年人的认知状态
IF 1.7
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100123
{"title":"TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia","authors":"","doi":"10.1016/j.nbas.2024.100123","DOIUrl":"10.1016/j.nbas.2024.100123","url":null,"abstract":"<div><p>Aging is a complex and diverse biological process characterized by progressive molecular, cellular, and tissue damage, resulting in a loss of physiological integrity and heightened vulnerability to pathology. This biological diversity corresponds with highly variable cognitive trajectories, which are further confounded by genetic and environmental factors that influence the resilience of the aging brain. Given this complexity, there is a need for neurophysiological indicators that not only discern physiologic and pathologic aging but also closely align with cognitive trajectories. Transcranial Magnetic Stimulation (TMS) may have utility in this regard as a non-invasive brain stimulation tool that can characterize features of cortical excitability. Particularly, as a proxy for central cholinergic function, short-afferent inhibition (SAI) dysfunction is robustly associated with cognitive deficits in the latter stages of Alzheimer’s Disease and Related Dementia (ADRD). In this study, we evaluated SAI in healthy young adults and older adults who, though absent clinical diagnoses, were algorithmically classified as cognitively normal (CN) or cognitively impaired (CI) according to the Jak/Bondi actuarial criteria. We report that SAI is preserved in the Old-CN cohort relative to the young adults, and SAI is significantly diminished in the Old-CI cohort relative to both young and CN older adults. Additionally, diminished SAI was significantly associated with impaired sustained attention and working memory. As a proxy measure for central cholinergic deficits, we discuss the potential value of SAI for discerning physiological and pathological aging.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000197/pdfft?md5=503c1b66230036c6b85cf844ec28c8b3&pid=1-s2.0-S2589958924000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome-driven alterations in metabolic pathways and impaired cognition in aged female TgF344-AD rats 微生物驱动的代谢途径改变和老年雌性 TgF344-AD 大鼠认知能力受损
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100119
Abbi R. Hernandez , Erik Parker , Maham Babar , Anisha Banerjee , Sarah Ding , Alexis Simley , Thomas W. Buford
{"title":"Microbiome-driven alterations in metabolic pathways and impaired cognition in aged female TgF344-AD rats","authors":"Abbi R. Hernandez ,&nbsp;Erik Parker ,&nbsp;Maham Babar ,&nbsp;Anisha Banerjee ,&nbsp;Sarah Ding ,&nbsp;Alexis Simley ,&nbsp;Thomas W. Buford","doi":"10.1016/j.nbas.2024.100119","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100119","url":null,"abstract":"<div><p>Alzheimer’s disease (AD) not only affects cognition and neuropathology, but several other facets capable of negatively impacting quality of life and potentially driving impairments, including altered gut microbiome (GMB) composition and metabolism. Aged (20 + mo) female TgF344-AD and wildtype rats were cognitively characterized on several tasks incorporating several cognitive domains, including task acquisition, object recognition memory, anxiety-like behaviors, and spatial navigation. Additionally, metabolic phenotyping, GMB sequencing throughout the intestinal tract (duodenum, jejunum, ileum, colon, and feces), neuropathological burden assessment and marker gene functional abundance predictions (PICRUSt2) were conducted. TgF344-AD rats demonstrated significant cognitive impairment in multiple domains, as well as regionally specific GMB dysbiosis. Relationships between peripheral factors were investigated using Canonical Correspondence Analysis (CCA), revealing correlations between GMB changes and both cognitive and metabolic factors. Moreover, communities of gut microbes contributing to essential metabolic pathways were significantly altered in TgF344-AD rats. These data indicate dysbiosis may affect cognitive outcomes in AD through alterations in metabolism-related enzymatic pathways that are necessary for proper brain function. Moreover, these changes were mostly observed in intestinal segments required for carbohydrate digestion, not fecal samples. These data support the targeting of intestinal and microbiome health for the treatment of AD.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258995892400015X/pdfft?md5=42db7c4aa939c4c947abf5ec235bbbb7&pid=1-s2.0-S258995892400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141243897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural correlates of home-based intervention effects on value-based sequential decision-making in healthy older adults 家庭干预对健康老年人基于价值的顺序决策影响的神经相关性
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100109
Kathleen Kang , Daria Antonenko , Franka Glöckner , Agnes Flöel , Shu-Chen Li
{"title":"Neural correlates of home-based intervention effects on value-based sequential decision-making in healthy older adults","authors":"Kathleen Kang ,&nbsp;Daria Antonenko ,&nbsp;Franka Glöckner ,&nbsp;Agnes Flöel ,&nbsp;Shu-Chen Li","doi":"10.1016/j.nbas.2024.100109","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100109","url":null,"abstract":"<div><p>Older adults demonstrate difficulties in sequential decision-making, which is partly attributed to under-recruitment of prefrontal networks. It is, therefore, important to understand the mechanisms that may improve this ability. This study investigated the effectiveness of an 18-sessions, home-based cognitive intervention and the neural mechanisms that underpin individual differences in intervention effects. Participants were required to learn sequential choices in a 3-stage Markov decision-making task that would yield the most rewards. Participants were assigned to better or worse responders group based on their performance at the last intervention session (T18). Better responders improved significantly starting from the fifth intervention session while worse responders did not improve across all training sessions. At post-intervention, only better responders showed condition-dependent modulation of the dorsolateral prefrontal cortex (DLPFC) as measured by fNIRS, with higher DLPFC activity in the delayed condition. Despite large individual differences, our data showed that value-based sequential-decision-making and its corresponding neural mechanisms can be remediated via home-based cognitive intervention in some older adults; moreover, individual differences in recruiting prefrontal activities after the intervention are associated with variations in intervention outcomes. Intervention-related gains were also maintained at three months after post-intervention. However, future studies should investigate the potential of combining other intervention methods such as non-invasive brain stimulation with cognitive intervention for older adults who do not respond to the intervention, thus emphasizing the importance of developing individualized intervention programs for older adults.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000045/pdfft?md5=92b523d3c508668afd08f2162eeb16b6&pid=1-s2.0-S2589958924000045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139726933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estrogen’s sex-specific effects on ischemic cell death and estrogen receptor mRNA expression in rat cortical organotypic explants 雌激素对大鼠大脑皮层器官外植体缺血性细胞死亡和雌激素受体 mRNA 表达的性别特异性影响
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100117
Amanda L. Trout , Christopher J McLouth , Jenne M. Westberry , Tomoko Sengoku , Melinda E. Wilson
{"title":"Estrogen’s sex-specific effects on ischemic cell death and estrogen receptor mRNA expression in rat cortical organotypic explants","authors":"Amanda L. Trout ,&nbsp;Christopher J McLouth ,&nbsp;Jenne M. Westberry ,&nbsp;Tomoko Sengoku ,&nbsp;Melinda E. Wilson","doi":"10.1016/j.nbas.2024.100117","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100117","url":null,"abstract":"<div><p>Estrogens, such as the biologically active 17-β estradiol (E2), regulate not only reproductive behaviors in adults, but also influence neurodevelopment and neuroprotection in both females and males. E2, contingent upon the timing and concentration of the therapy, is neuroprotective in female and male rodent models of stroke. <em>In Vivo</em> studies suggest that E2 may partially mediate this neuroprotection, particularly in the cortex, via ERα. <em>In Vitro studies,</em> utilizing a chemically induced ischemic injury in cortical explants from both sexes, suggest that ERα or ERβ signaling is needed to mediate the E2 protection. Since we know that the timing and concentration of E2 therapy may be sex-specific, we examined if E2 (1 nM) mediates neuroprotection when female and male cortical explants are separately isolated from postnatal day (PND) 3–4 rat. Changes in basal levels ERα, ERβ, and AR mRNA expression are compared across early post-natal development in the intact cortex and the corresponding days in vitro (DIV) for cortical explants. Following ischemic injury at 7 DIV, cell death and ERα, ERβ and AR mRNA expression was compared in female and male cortical explants. We provide evidence that E2-mediated protection is maintained in isolated cortical explants from females, but not male rats. In female cortical explants, the E2-mediated protection at 24 h occurs secondarily to a blunted transient increase in ERα mRNA at 12 h. These results suggest that cortical E2-mediated protection is influenced by sex and supports data to differentially treat females and males following ischemic injury.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000136/pdfft?md5=0c7048ea54f7186c449d5ee4a428ea83&pid=1-s2.0-S2589958924000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network connectivity differences in music listening among older adults following a music-based intervention 音乐干预后老年人听音乐时的网络连接差异
IF 1.7
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100128
{"title":"Network connectivity differences in music listening among older adults following a music-based intervention","authors":"","doi":"10.1016/j.nbas.2024.100128","DOIUrl":"10.1016/j.nbas.2024.100128","url":null,"abstract":"<div><div>Music-based interventions are a common feature in long-term care with clinical reports highlighting music’s ability to engage individuals with complex diagnoses. While these findings are promising, normative findings from healthy controls are needed to disambiguate treatment effects unique to pathology and those seen in healthy aging. The present study examines brain network dynamics during music listening in a sample of healthy older adults before and after a music-based intervention. We found intervention effects from hidden Markov model-estimated fMRI network data. Following the intervention, participants demonstrated greater occupancy (the amount of time a network was occupied) in a temporal-mesolimbic network. We conclude that network dynamics in healthy older adults are sensitive to music-based interventions. We discuss these findings’ implications for future studies with individuals with neurodegeneration.</div></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-related decline in social interaction is associated with decreased c-Fos induction in select brain regions independent of oxytocin receptor expression profiles 与年龄相关的社交互动减少与特定脑区的 c-Fos 诱导减少有关,而与催产素受体表达谱无关
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100107
J. Russell Ravenel , Amy E. Perkins , Angela Tomczik , Ana Defendini , Helen K. Strnad , Elena Varlinskaya , Terrence Deak , Robert L. Spencer
{"title":"Age-related decline in social interaction is associated with decreased c-Fos induction in select brain regions independent of oxytocin receptor expression profiles","authors":"J. Russell Ravenel ,&nbsp;Amy E. Perkins ,&nbsp;Angela Tomczik ,&nbsp;Ana Defendini ,&nbsp;Helen K. Strnad ,&nbsp;Elena Varlinskaya ,&nbsp;Terrence Deak ,&nbsp;Robert L. Spencer","doi":"10.1016/j.nbas.2024.100107","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100107","url":null,"abstract":"<div><p>Social behavior decreases with aging, and we have previously found a substantial decline in social investigative behavior of old female rats. In this study we examined the neural activation pattern (<em>c-Fos</em> mRNA) of young (3 month) and old (18 month) female rats after brief 10 min exposure to a novel female rat in order to identify forebrain regions that show selective age-related alterations in their neural response to social investigation. We also measured relative oxytocin receptor expression (<em>Oxtr</em> mRNA) as a possible factor in age-related declines in <em>c-Fos</em> induction after social interaction. Young rats exposed to a social partner had a greater <em>c-Fos</em> mRNA response than those exposed to novel context alone in the lateral septum and septohypothalamic area, with blunted increases evident in old rats. In addition, <em>c-Fos</em> mRNA levels in the lateral septum were positively correlated with social investigative behavior. Interestingly, age-related differences in <em>c-Fos</em> gene induction were unrelated to the local amount of <em>Oxtr</em> expression within specific brain regions, although we found an age-related decline in <em>Oxtr</em> expression in the ventromedial hypothalamus. This functional neuroanatomical characterization may point to certain brain regions that are especially sensitive to age-related declines associated with social interaction behavior.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000021/pdfft?md5=81a4a7da92868c991b73dd80046dea42&pid=1-s2.0-S2589958924000021-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsatility analysis of the circle of Willis 威利斯圈脉动分析
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100111
Henning U. Voss , Qolamreza R. Razlighi
{"title":"Pulsatility analysis of the circle of Willis","authors":"Henning U. Voss ,&nbsp;Qolamreza R. Razlighi","doi":"10.1016/j.nbas.2024.100111","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100111","url":null,"abstract":"<div><h3>Purpose</h3><p>To evaluate the phenomenological significance of cerebral blood pulsatility imaging in aging research.</p></div><div><h3>Methods</h3><p>N = 38 subjects from 20 to 72 years of age (24 females) were imaged with ultrafast MRI with a sampling rate of 100 ms and simultaneous acquisition of pulse oximetry data. Of these, 28 subjects had acceptable MRI and pulse data, with 16 subjects between 20 and 28 years of age, and 12 subjects between 61 and 72 years of age. Pulse amplitude in the circle of Willis was assessed with the recently developed method of analytic phase projection to extract blood volume waveforms.</p></div><div><h3>Results</h3><p>Arteries in the circle of Willis showed pulsatility in the MRI for both the young and old age groups. Pulse amplitude in the circle of Willis significantly increased with age (p = 0.01) but was independent of gender, heart rate, and head motion during MRI.</p></div><div><h3>Discussion and conclusion</h3><p>Increased pulse wave amplitude in the circle of Willis in the elderly suggests a phenomenological significance of cerebral blood pulsatility imaging in aging research. The physiologic origin of increased pulse amplitude (increased pulse pressure vs. change in arterial morphology vs. re-shaping of pulse waveforms caused by the heart, and possible interaction with cerebrospinal fluid pulsatility) requires further investigation.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000069/pdfft?md5=2d9cc69256644deecc2a248e601b1ef4&pid=1-s2.0-S2589958924000069-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain structure variation and individual differences in theory of mind among older adults 大脑结构变异与老年人思维理论的个体差异
Aging brain Pub Date : 2024-01-01 DOI: 10.1016/j.nbas.2024.100115
Yuki Otsuka , Ryusuke Nakai , Miho Shizawa , Shoji Itakura , Ayumi Sato , Nobuhito Abe
{"title":"Brain structure variation and individual differences in theory of mind among older adults","authors":"Yuki Otsuka ,&nbsp;Ryusuke Nakai ,&nbsp;Miho Shizawa ,&nbsp;Shoji Itakura ,&nbsp;Ayumi Sato ,&nbsp;Nobuhito Abe","doi":"10.1016/j.nbas.2024.100115","DOIUrl":"https://doi.org/10.1016/j.nbas.2024.100115","url":null,"abstract":"<div><p>The theory of mind (ToM) is not substantially influenced by aging, suggesting the emergence of various compensatory mechanisms. To identify brain regions subserving ToM in older adults, we investigated the associations of individual differences in brain structure with performance on the Reading the Mind in the Eyes Test (RMET), a widely used measure of ToM, using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). In contrast to findings obtained from young adults, where multiple cortical regions are implicated in ToM, VBM analysis revealed a significant positive correlation between RMET score and gray matter (GM) volume only in the right middle temporal gyrus, a region implicated in social cognition. Alternatively, TBSS revealed significant positive correlations between RMET score and the fractional anisotropy (FA) values in widespread white matter (WM) tracts, including the bilateral uncinate fasciculus, a region previously linked to RMET performance in young adults. We speculate that individual differences in WM integrity are strong influences on ToM among older adults, whereas the impact of individual differences in GM volumes is relatively limited.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000112/pdfft?md5=59edf1e7d70b7f350503ee596ac8c4e5&pid=1-s2.0-S2589958924000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信