MC. Alonso-Moreno , M. Gallardo-Caballero , AV. Prádanos-Senén , M. Llorens-Martín
{"title":"Human adult hippocampal neurogenesis in health and disease","authors":"MC. Alonso-Moreno , M. Gallardo-Caballero , AV. Prádanos-Senén , M. Llorens-Martín","doi":"10.1016/j.nbas.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>The mammalian hippocampus generates new dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), participates in hippocampal functions such as memory and mood regulation. Moreover, AHN is impaired in mouse models and patients with neurodegenerative and psychiatric disorders. Additionally, physiological aging targets AHN and the integrity of the hippocampal neurogenic niche. This perspective review aims to discuss the regulation of human AHN in patients with neurodegenerative and psychistric conditions. Moreover, we will address key adaptations of human AHN and the neurogenic niche in response to physiological aging.</div></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"8 ","pages":"Article 100145"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958925000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mammalian hippocampus generates new dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis (AHN), participates in hippocampal functions such as memory and mood regulation. Moreover, AHN is impaired in mouse models and patients with neurodegenerative and psychiatric disorders. Additionally, physiological aging targets AHN and the integrity of the hippocampal neurogenic niche. This perspective review aims to discuss the regulation of human AHN in patients with neurodegenerative and psychistric conditions. Moreover, we will address key adaptations of human AHN and the neurogenic niche in response to physiological aging.