Advanced quantum technologies最新文献

筛选
英文 中文
Back Cover: Triggering and Modulation of Quantum Magnon-Photon Hall Insulator in a 1D Cavity Magnonics Lattice (Adv. Quantum Technol. 9/2024) 封底:一维腔磁子晶格中量子磁子-光子霍尔绝缘体的触发和调制(Adv.)
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-11 DOI: 10.1002/qute.202470026
Lü Xiang, He Wang, Zi-Meng Li, Zhu-Cheng Zhang, Yi-Ping Wang
{"title":"Back Cover: Triggering and Modulation of Quantum Magnon-Photon Hall Insulator in a 1D Cavity Magnonics Lattice (Adv. Quantum Technol. 9/2024)","authors":"Lü Xiang,&nbsp;He Wang,&nbsp;Zi-Meng Li,&nbsp;Zhu-Cheng Zhang,&nbsp;Yi-Ping Wang","doi":"10.1002/qute.202470026","DOIUrl":"https://doi.org/10.1002/qute.202470026","url":null,"abstract":"<p>In article number 2400111, Zhu-Cheng Zhang, Yi-Ping Wang, and co-workers propose a scheme for implementing a one-dimensional cavity magnonics lattice that exhibits quantum magnon–photon Hall insulator behaviors. By adjusting corresponding parameters, different energy spectrum structures can be triggered, and the flipping of edge states can be observed, enabling multi-channel topological quantum state transmission.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 9","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Dimensional Photonic Quantum Computing with a Measurement-Free Auxiliary System 使用无测量辅助系统的高维光子量子计算
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-09 DOI: 10.1002/qute.202400208
Xue-Mei Ren, Fang-Fang Du
{"title":"High-Dimensional Photonic Quantum Computing with a Measurement-Free Auxiliary System","authors":"Xue-Mei Ren,&nbsp;Fang-Fang Du","doi":"10.1002/qute.202400208","DOIUrl":"10.1002/qute.202400208","url":null,"abstract":"<p>Enhancing the capabilities of quantum computing relies heavily on harnessing the power of qudit-based high-dimensional quantum gates. In the study, single-qudit 4D <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$ X$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$ X^{2}$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mo>†</mo>\u0000 </msup>\u0000 <annotation>$ X^{dagger }$</annotation>\u0000 </semantics></math> gates tailored for a two-photon system in polarization states are presented. Furthermore, a two-qudit <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 <mo>×</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation>$4times 4$</annotation>\u0000 </semantics></math>-dimensional controlled-not (CNOT) gate designed for a four-photon system is introduced. These high-dimensional gates can offer versatile and straightforward optical implementations, ensuring them to fulfill in a deterministic way. To facilitate these processes, an auxiliary system in the form of a <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>-type atom residing in a cavity is employed. Remarkably, the auxiliary system retains its original state after the operation process ends, so it is not required to measure and plays a pivotal role in promoting effective interactions among distinct photons in its extended coherence time. Importantly, the in-depth analysis of the fidelities and efficiencies of these quantum gates showcase remarkable outcomes, affirming the superiority of the proposed protocols. Therefore, these high-dimensional gates not only amplify quantum parallelism, but also bolster the speed of quantum computations, fortify resilience against errors, and foster scalability for executing intricate quantum operations.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin- s $s$ Dicke States and Their Preparation 自旋$s$迪克态及其制备方法
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-09 DOI: 10.1002/qute.202400057
Rafael I. Nepomechie, Francesco Ravanini, David Raveh
{"title":"Spin-\u0000 \u0000 s\u0000 $s$\u0000 Dicke States and Their Preparation","authors":"Rafael I. Nepomechie,&nbsp;Francesco Ravanini,&nbsp;David Raveh","doi":"10.1002/qute.202400057","DOIUrl":"10.1002/qute.202400057","url":null,"abstract":"<p>The notion of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mi>u</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$su(2)$</annotation>\u0000 </semantics></math> spin-<span></span><math>\u0000 <semantics>\u0000 <mi>s</mi>\u0000 <annotation>$s$</annotation>\u0000 </semantics></math> Dicke states is introduced, which are higher-spin generalizations of usual (spin-1/2) Dicke states. These multi-qudit states can be expressed as superpositions of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mi>u</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>s</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$su(2s+1)$</annotation>\u0000 </semantics></math> qudit Dicke states. They satisfy a recursion formula, which is used to formulate an efficient quantum circuit for their preparation, whose size scales as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>s</mi>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$sk(2sn-k)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> is the number of qudits and <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> is the number of times the total spin-lowering operator is applied to the highest-weight state. The algorithm is deterministic and does not require ancillary qudits.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully-Optimized Quantum Metrology: Framework, Tools, and Applications 全优化量子计量学:框架、工具和应用
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-09 DOI: 10.1002/qute.202400094
Qiushi Liu, Zihao Hu, Haidong Yuan, Yuxiang Yang
{"title":"Fully-Optimized Quantum Metrology: Framework, Tools, and Applications","authors":"Qiushi Liu,&nbsp;Zihao Hu,&nbsp;Haidong Yuan,&nbsp;Yuxiang Yang","doi":"10.1002/qute.202400094","DOIUrl":"10.1002/qute.202400094","url":null,"abstract":"<p>This tutorial introduces a systematic approach for addressing the key question of quantum metrology: For a generic task of sensing an unknown parameter, what is the ultimate precision given a constrained set of admissible strategies. The approach outputs the maximal attainable precision (in terms of the maximum of quantum Fisher information) as a semidefinite program and optimal strategies as feasible solutions thereof. Remarkably, the approach can identify the optimal precision for different sets of strategies, including parallel, sequential, quantum SWITCH-enhanced, causally superposed, and generic indefinite-causal-order strategies. The tutorial consists of a pedagogic introduction to the background and mathematical tools of optimal quantum metrology, a detailed derivation of the main approach, and various concrete examples. As shown in the tutorial, applications of the approach include, but are not limited to, strict hierarchy of strategies in noisy quantum metrology, memory effect in non-Markovian metrology, and designing optimal strategies. Compared with traditional approaches, the approach here yields the exact value of the optimal precision, offering more accurate criteria for experiments and practical applications. It also allows for the comparison between conventional strategies and the recently discovered causally-indefinite strategies, serving as a powerful tool for exploring this new area of quantum metrology.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imperfect Measurement Devices Impact the Security of Tomography-Based Source-Independent Quantum Random Number Generator 不完善的测量设备影响基于断层扫描的源无关量子随机数发生器的安全性
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-09 DOI: 10.1002/qute.202400334
Yuanhao Li, Yangyang Fei, Weilong Wang, Xiangdong Meng, Hong Wang, Qianheng Duan, Yu Han, Zhi Ma
{"title":"Imperfect Measurement Devices Impact the Security of Tomography-Based Source-Independent Quantum Random Number Generator","authors":"Yuanhao Li,&nbsp;Yangyang Fei,&nbsp;Weilong Wang,&nbsp;Xiangdong Meng,&nbsp;Hong Wang,&nbsp;Qianheng Duan,&nbsp;Yu Han,&nbsp;Zhi Ma","doi":"10.1002/qute.202400334","DOIUrl":"10.1002/qute.202400334","url":null,"abstract":"<p>Source-independent quantum random number generators (SI-QRNGs) can generate secure random numbers with untrusted and uncharacterized sources. Recently, a tomography-based SI-QRNG protocol has garnered significant attention for its higher randomness generation rate[Phys. Rev. A 99, 022328 (2019)], achieved through measurements utilizing three mutually unbiased bases. However, imperfect and inadequately characterized measurement devices would impact the security and performance of this protocol. In this work, considering the imperfect basis modulation, afterpulse effect and detection efficiency mismatch, it is demonstrated that the imperfect measurement devices would reduce the extractable randomness and lead to the incorrect estimation of the conditional min-entropy. Additionally, the influences of the finite-size effect and the performances of the protocol based on different parameter estimation methods are investigated and compared. To guarantee the security of generated random numbers, accurate conditional min-entropy estimation methods that are compatible with imperfect factors are also developed. The work emphasizes the significance of considering the imperfections in measurement devices and establishing tighter bounds for parameter estimation, especially in high-speed systems, thereby enhancing the robustness and performance of the protocol.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Entropic Dynamics of Multiqubit Cavity QED System 多比特腔体 QED 系统的熵动力学研究
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-06 DOI: 10.1002/qute.202400246
Hui-hui Miao
{"title":"Investigating Entropic Dynamics of Multiqubit Cavity QED System","authors":"Hui-hui Miao","doi":"10.1002/qute.202400246","DOIUrl":"10.1002/qute.202400246","url":null,"abstract":"<p>Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored. In the modified version of the Tavis–Cummings–Hubbard model, atoms are held in optical cavities through optical tweezers and can jump between different cavities through the tunneling effect. The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon. Electron spin and the Pauli exclusion principle are considered. Formation and break of covalent bond and creation and annihilation of phonon are also introduced into the model. The system is bipartite. The effect of all kinds of interactions on entropy is studied. And the von Neumann entropy of different subsystems is compared. The results show that the entropic dynamics can be controlled by selectively choosing system parameters, and the entropy values of different subsystems satisfy certain inequality relationships.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Authenticated Quantum Anonymous Secret Sharing for Classical and Quantum Information 用于经典和量子信息的新型认证量子匿名秘密共享
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-06 DOI: 10.1002/qute.202400295
Qingle Wang, Yixi Xu, Guodong Li, Yunguang Han, Yuqian Zhou, Xin Li, Long Cheng
{"title":"A Novel Authenticated Quantum Anonymous Secret Sharing for Classical and Quantum Information","authors":"Qingle Wang,&nbsp;Yixi Xu,&nbsp;Guodong Li,&nbsp;Yunguang Han,&nbsp;Yuqian Zhou,&nbsp;Xin Li,&nbsp;Long Cheng","doi":"10.1002/qute.202400295","DOIUrl":"10.1002/qute.202400295","url":null,"abstract":"<p>Anonymous secret sharing (ASS) is an essential cryptographic concept that facilitates the sharing and reconstruction of secret information while safeguarding the identity of the involved secret receivers, which has broad applications in key management, data backup, and distributed systems. In this study, a novel authenticated quantum anonymous secret sharing (QASS) protocol that emphasizes information privacy and identity anonymity protection is proposed. Employing <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-level multipartite GHZ states as a quantum resource, one-sided anonymous entanglement (AE) is innovatively established between the dealer and anonymous receivers, enabling the dealer to distribute a random share of secret information. Additionally, by establishing a one-sided AE between anonymous receivers and restorer, the restorer can securely collect and reconstruct the secret information using quantum teleportation (QT). Rigorous security analysis demonstrates that protocol can resist attacks from active adversaries and potentially dishonest users. Quantum experiments on IBM Qiskit validate the correctness and feasibility of the proposed QASS protocol. This work contributes to the advancement of quantum anonymous communication, addressing the requirements for information privacy and identity anonymity in practical application environments.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additively Manufactured Ceramics for Compact Quantum Technologies 用于紧凑型量子技术的快速成型陶瓷
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-02 DOI: 10.1002/qute.202400076
Marc Christ, Conrad Zimmermann, Sascha Neinert, Bastian Leykauf, Klaus Döringshoff, Markus Krutzik
{"title":"Additively Manufactured Ceramics for Compact Quantum Technologies","authors":"Marc Christ,&nbsp;Conrad Zimmermann,&nbsp;Sascha Neinert,&nbsp;Bastian Leykauf,&nbsp;Klaus Döringshoff,&nbsp;Markus Krutzik","doi":"10.1002/qute.202400076","DOIUrl":"10.1002/qute.202400076","url":null,"abstract":"<p>Quantum technologies are advancing from fundamental research in specialized laboratories to practical applications in the field, driving the demand for robust, scalable, and reproducible system integration techniques. Ceramic components can be pivotal thanks to high stiffness, low thermal expansion, and excellent dimensional stability under thermal stress. Lithography-based additive manufacturing of technical ceramics is explored, especially for miniaturized physics packages and electro-optical systems. This approach enables functional systems with precisely manufactured, intricate structures, and high mechanical stability while minimizing size and weight. It facilitates rapid prototyping, simplifies fabrication and leads to highly integrated, reliable devices. As an electrical insulator with low outgassing and high temperature stability, printed technical ceramics such as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Al</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${rm Al}_2{rm O}_3$</annotation>\u0000 </semantics></math> and AlN bridge a technology gap in quantum technology and offer advantages over other printable materials. This potential is demonstrated with CerAMRef, a micro-integrated rubidium D2 line optical frequency reference on a printed <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Al</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>O</mi>\u0000 <msub>\u0000 <mrow></mrow>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${rm Al}_2{rm O}{_3}$</annotation>\u0000 </semantics></math> micro-optical bench and housing. The frequency instability of the reference is comparable to laboratory setups while the volume of the integrated spectroscopy setup is only <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>6</mn>\u0000 <mspace></mspace>\u0000 <mi>m</mi>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation>$6 ,mathrm{m}mathrm{L}$</annotation>\u0000 </semantics></math>. Potential for future applications is identified in compact atomic magnetometers, miniaturized optical atom traps, and vacuum system integration.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconventional Photon Blockade in a Hybrid Optomechanical System with an Embedded Spin-Triplet 带有嵌入式自旋三重子的混合光机械系统中的非常规光子阻断技术
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-02 DOI: 10.1002/qute.202400232
Yao Dong, Jing-jing Wang, Guo-Feng Zhang
{"title":"Unconventional Photon Blockade in a Hybrid Optomechanical System with an Embedded Spin-Triplet","authors":"Yao Dong,&nbsp;Jing-jing Wang,&nbsp;Guo-Feng Zhang","doi":"10.1002/qute.202400232","DOIUrl":"10.1002/qute.202400232","url":null,"abstract":"<p>This research investigates the unconventional photon blockade in a hybrid optomechanical system with an embedded spin-triplet state. The self-homodyning interference between squeezed quantum fluctuations produced by the emitter and the coherent fraction from the driving laser results in two-photon suppression. Analytical solutions of the correlator equation and numerical simulations of the master equation reveal that modulated mechanical dissipation plays a crucial role in achieving strong single-photon blockade. In contrast to conventional cavity optomechanical systems, a second-order correlation function of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>g</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≃</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$g^{(2)}(0)simeq 0$</annotation>\u0000 </semantics></math> can be achieved with weak single-photon optomechanical coupling. By combining unconventional and conventional antibunching, the hybrid system achieves the convergence of maximal photon population, two-photon interference, and suppression of higher-order correlations. Additionally, the influence of the thermal noise on photon blockade is investigated, demonstrating greater robustness of the second-order correlation under weaker phonon-spin coupling.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Temperature Sensing in Nanodiamonds Using Dressed States 纳米金刚石利用凹陷状态进行选择性温度传感
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-02 DOI: 10.1002/qute.202400271
Nathaniel M. Beaver, Paul Stevenson
{"title":"Selective Temperature Sensing in Nanodiamonds Using Dressed States","authors":"Nathaniel M. Beaver,&nbsp;Paul Stevenson","doi":"10.1002/qute.202400271","DOIUrl":"10.1002/qute.202400271","url":null,"abstract":"<p>Temperature sensing at the nanoscale is a significant experimental challenge. Here, an approach using dressed states is reported to make a leading quantum sensor – the nitrogen-vacancy (NV) center in diamond – selectively sensitive to temperature, even in the presence of normally confounding magnetic fields. Using an experimentally straightforward approach, the magnetic sensitivity of the NV center is suppressed by a factor of seven, while retaining full temperature sensitivity and narrowing the NV center linewidth. These results demonstrate the power of engineering the sensor Hamiltonian using external control fields to enable sensing with improved specificity to target signals.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400271","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信