Extreme Plasmons

IF 4.4 Q1 OPTICS
Aakash A. Sahai
{"title":"Extreme Plasmons","authors":"Aakash A. Sahai","doi":"10.1002/qute.202500037","DOIUrl":null,"url":null,"abstract":"<p>Nanometric confinement of electromagnetic energy has become possible using plasmons that are quasiparticles constituted by collective oscillations of conduction band electron gas. Here, nonperturbative plasmons are modeled having large-amplitude oscillations that approach the extreme limit set by breakdown in characteristic coherence of collective quantum electron gas oscillations. In contrast, conventional plasmons are small-amplitude oscillations. Controlled excitation of such extreme plasmons modeled here has become realizable now with trends in ultrashort particle bunch compression. Extreme plasmons unleash unparalleled possibilities including access to unprecedented Petavolts per meter fields. In this work, an analytical model of this class of plasmons is developed based on quantum kinetic framework. A controllable extreme plasmon, the surface crunch-in plasmon, is modeled here using a modified independent electron approximation. In this model, various quantum effects such as suppression of electron–electron interactions due to non-classical equilibrium states at trajectory extrema are incorporated by introducing a quantum factor, <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>Q</mi>\n </msub>\n <annotation>$\\mathcal {F}_Q$</annotation>\n </semantics></math>.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202500037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanometric confinement of electromagnetic energy has become possible using plasmons that are quasiparticles constituted by collective oscillations of conduction band electron gas. Here, nonperturbative plasmons are modeled having large-amplitude oscillations that approach the extreme limit set by breakdown in characteristic coherence of collective quantum electron gas oscillations. In contrast, conventional plasmons are small-amplitude oscillations. Controlled excitation of such extreme plasmons modeled here has become realizable now with trends in ultrashort particle bunch compression. Extreme plasmons unleash unparalleled possibilities including access to unprecedented Petavolts per meter fields. In this work, an analytical model of this class of plasmons is developed based on quantum kinetic framework. A controllable extreme plasmon, the surface crunch-in plasmon, is modeled here using a modified independent electron approximation. In this model, various quantum effects such as suppression of electron–electron interactions due to non-classical equilibrium states at trajectory extrema are incorporated by introducing a quantum factor, F Q $\mathcal {F}_Q$ .

极端的等离子体
利用由传导带电子气体的集体振荡构成的准粒子等离子体,对电磁能量的纳米限制已经成为可能。在这里,非微扰等离子体被建模为具有接近集体量子电子气体振荡特征相干性击穿所设定的极端极限的振幅振荡。相比之下,传统的等离子激子是小振幅振荡。随着超短粒子束压缩的发展趋势,这种极端等离子体激元的受控激发已经成为可能。极端等离子体释放出前所未有的可能性,包括前所未有的每米千伏的电场。本文基于量子动力学框架建立了这类等离子体的解析模型。一个可控制的极端等离子体激元,表面压缩等离子体激元,在这里使用一个改进的独立电子近似模型。在该模型中,通过引入量子因子F Q$ \mathcal {F}_Q$,结合了各种量子效应,例如由于轨迹极值处的非经典平衡态而抑制电子-电子相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信