Tian-Ren Jin, Yun-Hao Shi, Zheng-An Wang, Tian-Ming Li, Kai Xu, Heng Fan
{"title":"Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation","authors":"Tian-Ren Jin, Yun-Hao Shi, Zheng-An Wang, Tian-Ming Li, Kai Xu, Heng Fan","doi":"10.1002/qute.202400150","DOIUrl":"10.1002/qute.202400150","url":null,"abstract":"<p>Quantum error mitigation aims to reduce errors in quantum systems and improve accuracy. Zero-noise extrapolation (ZNE) is a commonly used method, where noise is amplified, and the target expectation is extrapolated to a noise-free point. However, ZNE relies on assumptions about error rates based on the error model. In this study, a purity-assisted zero-noise extrapolation (pZNE) method is utilized to address limitations in error rate assumptions and enhance the extrapolation process. The pZNE is based on the Pauli diagonal error model implemented using the Pauli twirling technique. Although this method does not significantly reduce the bias of routine ZNE, it extends its effectiveness to a wider range of error rates where routine ZNE may face limitations. In addition, the practicality of the pZNE method is verified through numerical simulations and experiments on the online quantum computation platform, <i>Quafu</i>. Comparisons with routine ZNE and virtual distillation methods show that biases in extrapolation methods increase with error rates and may become divergent at high error rates. The bias of pZNE is slightly lower than routine ZNE, while its error rate threshold surpasses that of routine ZNE. Furthermore, for full density matrix information, the pZNE method is more efficient than the routine ZNE.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyu Xiong, Bangying Tang, Hui Han, Jinquan Huang, Mingqiang Bai, Fangzhao Li, Wanrong Yu, Zhiwen Mo, Bo Liu
{"title":"Efficient Arbitrated Quantum Digital Signature with Multi-Receiver Verification","authors":"Siyu Xiong, Bangying Tang, Hui Han, Jinquan Huang, Mingqiang Bai, Fangzhao Li, Wanrong Yu, Zhiwen Mo, Bo Liu","doi":"10.1002/qute.202400110","DOIUrl":"10.1002/qute.202400110","url":null,"abstract":"<p>Quantum digital signature is used to authenticate the identity of the signer with information theoretical security while providing non-forgery and non-repudiation services. In traditional multi-receiver quantum digital signature schemes without an arbitrator, the transferability of one-to-one signature is always required to achieve unforgeability, with complicated implementation and heavy key consumption. In this article, an arbitrated quantum digital signature scheme is proposed, in which the signature can be verified by multiple receivers simultaneously, and meanwhile, the transferability of the signature is still kept. This scheme can be simplified performed to various quantum secure networks, due to the proposed efficient signature calculation procedure with low secure key consumption and low computation complexity, by employing one-time universal hashing algorithm and a one-time pad encryption scheme. The evaluation results show that this scheme uses at least two orders of magnitude less key than existing signature schemes with transferability when signing files of the same length with the same number of receivers and security parameter settings.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Purity and Construction of Arbitrary Dimensional \u0000 \u0000 k\u0000 $k$\u0000 -Uniform Mixed States","authors":"Xiao Zhang, Shanqi Pang, Shao-Ming Fei, Zhu-Jun Zheng","doi":"10.1002/qute.202400245","DOIUrl":"10.1002/qute.202400245","url":null,"abstract":"<p><i>k</i>-uniform mixed states are a significant class of states characterized by all <i>k</i>-party reduced states being maximally mixed.Novel methodologies are constructed for constructing <i>k</i>-uniform mixed states with the highest possible purity. By using the orthogonal partition of orthogonal arrays, a series of new <i>k</i>-uniform mixed states is derived. Consequently, an infinite number of higher-dimensional <i>k</i>-uniform mixed states, including those with highest purity, can be generated.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}