Advanced quantum technologies最新文献

筛选
英文 中文
UltraLow Threshold Phonon Laser in a PT $mathcal {PT}$ -Symmetric Cavity Magnomechanical System
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-27 DOI: 10.1002/qute.202400350
Ming-Song Ding, Li Zheng, Ying Shi, Yu-Jie Liu
{"title":"UltraLow Threshold Phonon Laser in a \u0000 \u0000 PT\u0000 $mathcal {PT}$\u0000 -Symmetric Cavity Magnomechanical System","authors":"Ming-Song Ding,&nbsp;Li Zheng,&nbsp;Ying Shi,&nbsp;Yu-Jie Liu","doi":"10.1002/qute.202400350","DOIUrl":"https://doi.org/10.1002/qute.202400350","url":null,"abstract":"<p>The magnomechanical interaction arises from the coupling between magnons and phonons, an effect that has attracted significant attention. Leveraging this foundation, an ultralow threshold phonon laser within a parity-time (<span></span><math>\u0000 <semantics>\u0000 <mi>PT</mi>\u0000 <annotation>$mathcal {PT}$</annotation>\u0000 </semantics></math>)-symmetric cavity magnomechanical (CMM) system is investigated. The <span></span><math>\u0000 <semantics>\u0000 <mi>PT</mi>\u0000 <annotation>$mathcal {PT}$</annotation>\u0000 </semantics></math>-symmetry is achieved by incorporating a gain mechanism into the cavity mode and the amplification of phonon excitation number is achieved through the pumping of magnon mode. As the gain and dissipation approach the equilibrium, the mechanical gain undergoes a notable amplification, giving rise to a phonon laser action characterized by an ultralow threshold condition. This finding not only promotes a cross-disciplinary approach in fields such as non-Hermitian physics and quantum magnomechanics but also points to a promising path for enhancing the magnomechanical effect.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximating Maximum Independent Set on Rydberg Atom Arrays Using Local Detunings 利用局部调谐近似雷德贝格原子阵列上的最大独立集
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-26 DOI: 10.1002/qute.202400291
Hyeonjun Yeo, Ha Eum Kim, Kabgyun Jeong
{"title":"Approximating Maximum Independent Set on Rydberg Atom Arrays Using Local Detunings","authors":"Hyeonjun Yeo,&nbsp;Ha Eum Kim,&nbsp;Kabgyun Jeong","doi":"10.1002/qute.202400291","DOIUrl":"https://doi.org/10.1002/qute.202400291","url":null,"abstract":"<p>Rydberg atom arrays operated by a quantum adiabatic principle are among the most promising quantum simulating platforms due to their scalability and long coherence time. From the perspective of combinatorial optimization, they offer an efficient solution for an intrinsic maximum independent set problem because of the resemblance between the Rydberg Hamiltonian and the cost function of the maximum independent set problem. In this study, a strategy is suggested to approximate maximum independent sets by adjusting local detunings on the Rydberg Hamiltonian according to each vertex's vertex support, which is a quantity that represents connectivity between vertices. By doing so, the strategy successfully reduces the error rate three times for the checkerboard graphs with defects when the adiabaticity is sufficient. In addition, the strategy decreases the error rate for random graphs even when the adiabaticity is relatively insufficient. Moreover, it is shown that the strategy helps to prepare a quantum many-body ground state by raising the fidelity between the evolved quantum state and a 2D cat state on a square lattice. Finally, the strategy is combined with the non-abelian adiabatic mixing and this approach is highly successful in finding maximum independent sets compared to the conventional adiabatic evolution with local detunings.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-22 DOI: 10.1002/qute.202400163
Sorana Catrina, Alexandra Băicoianu
{"title":"Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation","authors":"Sorana Catrina,&nbsp;Alexandra Băicoianu","doi":"10.1002/qute.202400163","DOIUrl":"https://doi.org/10.1002/qute.202400163","url":null,"abstract":"<p>Ever since the discussions about a possible quantum computer arised, quantum simulations have been at the forefront of possible utilities, with the task of quantum simulations being one that promises quantum advantage. Recently, advancements have made it feasible to simulate complex molecules using Variational Quantum Eigensolvers or study the dynamics of many-body spin Hamiltonians. These simulations have the potential to yield valuable outcomes through the application of error mitigation techniques. Simulating smaller models carries a great amount of importance as well and currently, in the Noisy Intermediate Scale Quantum era, is more feasible since it is less prone to errors. The objective of this work is to examine the theoretical background and the circuit implementation of a quantum tunneling simulation, with an emphasis on hardware considerations. This study presents the theoretical background required for such implementation and highlights the main stages of its development. By building on classic approaches of quantum tunneling simulations, this study aims at improving the result of such simulations by employing error mitigation techniques, Zero Noise Extrapolation, and Readout Error Mitigation and uses them in conjunction with multiprogramming of the quantum chip, a technique used for solving the hardware under-utilization problem that arises in such contexts.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Transfer Learning with Adversarial Robustness for Classification of High-Resolution Image Datasets
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-22 DOI: 10.1002/qute.202400268
Amena Khatun, Muhammad Usman
{"title":"Quantum Transfer Learning with Adversarial Robustness for Classification of High-Resolution Image Datasets","authors":"Amena Khatun,&nbsp;Muhammad Usman","doi":"10.1002/qute.202400268","DOIUrl":"https://doi.org/10.1002/qute.202400268","url":null,"abstract":"<p>The application of quantum machine learning to large-scale high-resolution image datasets is not yet possible due to the limited number of qubits and relatively high level of noise in the current generation of quantum devices. In this work, this challenge is addressed by proposing a quantum transfer learning (QTL) architecture that integrates quantum variational circuits with a classical machine learning network pre-trained on ImageNet dataset. Through a systematic set of simulations over a variety of image datasets such as Ants &amp; Bees, CIFAR-10, and Road Sign Detection, the superior performance of the QTL approach over classical and quantum machine learning without involving transfer learning is demonstrated. Furthermore, the adversarial robustness of QTL architecture with and without adversarial training is evaluated, confirming that our QTL method is adversarially robust against data manipulation attacks and outperforms classical methods.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400268","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Pumping Laser Intensity Uniformity on Hybrid Optically Pumped Comagnetometer in the SERF Regime
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-18 DOI: 10.1002/qute.202400222
Longyan Ma, Ye Liu, Haoying Pang, Jiale Quan, Xiaohan Ge, Lihong Duan, Wei Quan
{"title":"Influence of Pumping Laser Intensity Uniformity on Hybrid Optically Pumped Comagnetometer in the SERF Regime","authors":"Longyan Ma,&nbsp;Ye Liu,&nbsp;Haoying Pang,&nbsp;Jiale Quan,&nbsp;Xiaohan Ge,&nbsp;Lihong Duan,&nbsp;Wei Quan","doi":"10.1002/qute.202400222","DOIUrl":"https://doi.org/10.1002/qute.202400222","url":null,"abstract":"<p>The effect of pumping laser intensity uniformity (PLIU) on the operation of a hybrid optically pumped comagnetometer operating in the spin-exchange relaxation-free regime (SERF) regime is investigated in this paper. First, an analytical steady-state output model for the comagnetometer with two alkali-metal atoms and one noble-gas atom is presented. By varying the diameter of the pumping laser beam to control the PLIU, 3D distribution models of the electron spin and nuclear spin polarization under different PLIU conditions are obtained. In the experiment, the effects of PLIU on multi-parameter, low-frequency magnetic-noise suppression capability, and long-term stability of the SERF comagnetometer are studied. The results indicate that within a certain range, increasing the diameter of the pumping laser beam improves the polarization uniformity of the atomic ensemble and reduces the light shift of the comagnetometer. As a result, both the low-frequency magnetic noise suppression capability and the long-term stability of the system increase. However, further reduction of the pumping laser diameter leads to a reversal of the system performance metrics, suggesting the presence of a tipping point. The research presented in this article is critical for advancing the efficient polarization study and hyperpolarization of SERF comagnetometers.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Quantum Image Secret Sharing Scheme Based on Designated Multi-Verifier Signature
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-18 DOI: 10.1002/qute.202400267
Ye Wang, Guang-Bao Xu, Dong-Huan Jiang
{"title":"A Quantum Image Secret Sharing Scheme Based on Designated Multi-Verifier Signature","authors":"Ye Wang,&nbsp;Guang-Bao Xu,&nbsp;Dong-Huan Jiang","doi":"10.1002/qute.202400267","DOIUrl":"https://doi.org/10.1002/qute.202400267","url":null,"abstract":"<p>This paper presents a quantum image secret sharing scheme based on designated multi-verifier signature. First, <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> share images are generated by a 2D hyperchaotic system incorporating sinusoidal mapping, Henon mapping, and Cubic mapping using the cascade modulation method. Quantum Arnold scrambling and diffusion are performed on the secret image. Subsequently, the concept of designated multi-verifier signature is introduced. In the secret image sharing phase, the pixel values of the share images are used to sign the secret image, and the signed secret image and <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> share images are sent to a trusted third party and <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> designated verifiers, respectively. In this scheme, no carrier images are required, and the share images held by the participants do not contain any information about the secret image. Finally, simulation experiments and security analysis are conducted on IBM Qiskit platform and Matlab software.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of Entanglement Witnesses with Quantum Circuits 用量子电路实现纠缠见证
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-12 DOI: 10.1002/qute.202400272
Shu-Qian Shen, Xin-Qi Gao, Rui-Qi Zhang, Ming Li, Shao-Ming Fei
{"title":"Implementation of Entanglement Witnesses with Quantum Circuits","authors":"Shu-Qian Shen,&nbsp;Xin-Qi Gao,&nbsp;Rui-Qi Zhang,&nbsp;Ming Li,&nbsp;Shao-Ming Fei","doi":"10.1002/qute.202400272","DOIUrl":"10.1002/qute.202400272","url":null,"abstract":"<p>Entanglement witnesses are economical tools for the experimental detection of quantum entanglement. Quantum algorithms for entanglement detection have recently attracted considerable attention. Based on block encoding techniques and state preparation methods, the implementation of several types of entanglement witnesses using quantum circuits without quantum state tomography is proposed. Further, explicit quantum circuits for the block encoding of some special matrices are presented.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Sensitivity of Quantum Fiber-Optical Gyroscope via a Non-Gaussian-State Probe 通过非高斯状态探测器提高量子光纤陀螺仪的灵敏度
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-12 DOI: 10.1002/qute.202400270
Wen-Xun Zhang, Rui Zhang, Yunlan Zuo, Le-Man Kuang
{"title":"Enhancing the Sensitivity of Quantum Fiber-Optical Gyroscope via a Non-Gaussian-State Probe","authors":"Wen-Xun Zhang,&nbsp;Rui Zhang,&nbsp;Yunlan Zuo,&nbsp;Le-Man Kuang","doi":"10.1002/qute.202400270","DOIUrl":"10.1002/qute.202400270","url":null,"abstract":"<p>A theoretical scheme to enhance the sensitivity of a quantum fiber-optical gyroscope (QFOG) via a non-Gaussian-state probe based on quadrature measurements of the optical field is proposed. The non-Gaussian-state probe utilizes the product state comprising a photon-added coherent state (PACS) with photon excitations and a coherent state (CS). The sensitivity of the QFOG is studied and it is found that it can be significantly enhanced through increasing the photon excitations in the PACS probe. The influence of photon loss on the performance of QFOG is investigated and it is demonstrated that the PACS probe exhibits robust resistance to photon loss. Furthermore, the performance of the QFOG using the PACS probe against two Gaussian-state probes: the CS probe and the squeezed state (SS) probe is compared and it is indicated that the PACS probe offers a significant advantage in terms of sensitivity, regardless of photon loss, under the constraint condition of the same total number of input photons. Particularly, it is found that the sensitivity of the PACS probe can be three orders of magnitude higher than that of two Gaussian-state probes for certain values of the measured parameter. The capabilities of the non-Gaussian state probe in enhancing the sensitivity and resisting photon loss can have a wide-ranging impact on future high-performance QFOGs.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024) 封面:束缚纳米线中的超导二极管效应(Adv. Quantum Technol.)
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-11 DOI: 10.1002/qute.202470023
Xiaofu Zhang, Qingchang Huan, Ruoyan Ma, Xingyu Zhang, Jia Huang, Xiaoyu Liu, Wei Peng, Hao Li, Zhen Wang, Xiaoming Xie, Lixing You
{"title":"Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)","authors":"Xiaofu Zhang,&nbsp;Qingchang Huan,&nbsp;Ruoyan Ma,&nbsp;Xingyu Zhang,&nbsp;Jia Huang,&nbsp;Xiaoyu Liu,&nbsp;Wei Peng,&nbsp;Hao Li,&nbsp;Zhen Wang,&nbsp;Xiaoming Xie,&nbsp;Lixing You","doi":"10.1002/qute.202470023","DOIUrl":"https://doi.org/10.1002/qute.202470023","url":null,"abstract":"<p>Superconducting diodes with nonreciprocal transport effect enable constructing novel logic devices, thereby laying the cornerstone of contemporary integrated circuits technology beyond Josephson junction-based circuits. Xiaofu Zhang, Lixing You, and co-workers designed and fabricated novel superconducting diodes based on the minimal superconducting electrical component – the superconducting nanowire –, which can rectify both square-wave and sine-wave signals without distortion (see article number 2300378). The superconducting nanowire diodes are irrespective of specific superconducting materials, and therefore promising for constructing low-dissipation superconducting integrated circuits for novel computation architectures.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 9","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover: Compact and Stable Diamond Quantum Sensors for Wide Applications (Adv. Quantum Technol. 9/2024) 封面内页:面向广泛应用的紧凑稳定的金刚石量子传感器(Adv. Quantum Technol.)
IF 4.4
Advanced quantum technologies Pub Date : 2024-09-11 DOI: 10.1002/qute.202470024
Yuta Kainuma, Yuji Hatano, Takayuki Shibata, Naota Sekiguchi, Akimichi Nakazono, Hiromitsu Kato, Shinobu Onoda, Takeshi Ohshima, Mutsuko Hatano, Takayuki Iwasaki
{"title":"Inside Front Cover: Compact and Stable Diamond Quantum Sensors for Wide Applications (Adv. Quantum Technol. 9/2024)","authors":"Yuta Kainuma,&nbsp;Yuji Hatano,&nbsp;Takayuki Shibata,&nbsp;Naota Sekiguchi,&nbsp;Akimichi Nakazono,&nbsp;Hiromitsu Kato,&nbsp;Shinobu Onoda,&nbsp;Takeshi Ohshima,&nbsp;Mutsuko Hatano,&nbsp;Takayuki Iwasaki","doi":"10.1002/qute.202470024","DOIUrl":"https://doi.org/10.1002/qute.202470024","url":null,"abstract":"<p>A diamond quantum sensor, based on an ensemble of nitrogen-vacancy (NV) centers in diamond, is depicted being held by the author's hand. This sensor module is compact, highly magnetically sensitive, and stable. It was achieved by mounting a <sup>12</sup>C-enriched chemical vapor deposition diamond, optics for high collection efficiency of NV fluorescence, and a balancing circuit to cancel out laser noise in the sensor module. This compact module is expected to be versatile across a broad spectrum of applications. For further information on the device and its applications, see article number 2300456 by Yuta Kainuma, Takayuki Iwasaki, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 9","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信