Heteroepitaxial (111) Diamond Quantum Sensors with Preferentially Aligned Nitrogen-Vacancy Centers for an Electric Vehicle Battery Monitor

IF 4.4 Q1 OPTICS
Kenichi Kajiyama, Moriyoshi Haruyama, Yuji Hatano, Hiromitsu Kato, Masahiko Ogura, Toshiharu Makino, Hitoshi Noguchi, Takeharu Sekiguchi, Takayuki Iwasaki, Mutsuko Hatano
{"title":"Heteroepitaxial (111) Diamond Quantum Sensors with Preferentially Aligned Nitrogen-Vacancy Centers for an Electric Vehicle Battery Monitor","authors":"Kenichi Kajiyama,&nbsp;Moriyoshi Haruyama,&nbsp;Yuji Hatano,&nbsp;Hiromitsu Kato,&nbsp;Masahiko Ogura,&nbsp;Toshiharu Makino,&nbsp;Hitoshi Noguchi,&nbsp;Takeharu Sekiguchi,&nbsp;Takayuki Iwasaki,&nbsp;Mutsuko Hatano","doi":"10.1002/qute.202400400","DOIUrl":null,"url":null,"abstract":"<p>A platform for heteroepitaxial (111) chemical vapor deposition (CVD) diamond quantum sensors with preferentially aligned nitrogen vacancy (NV) centers on a large substrate is developed, and its operation as an electric vehicle (EV) battery monitor is demonstrated. A self-standing heteroepitaxial CVD diamond film with a (111) orientation and a thickness of 150 µm is grown on a non-diamond substrate and subsequently separated from it. The high uniformity and crystallinity of the (111)-oriented diamond is confirmed. A 150-µm thick NV-diamond layer is then deposited on the heteroepitaxial diamond. The <i>T</i><sub>2</sub> value measured by confocal microscopy is 20 µs, which corresponds to substitutional nitrogen defect concentration of 8 ppm. The nitrogen-vacancy concentration and <i>T</i><sub>2</sub><sup>*</sup> are estimated to be 0.05 ppm and 0.05 µs by continuous wave optically detected magnetic resonance (CW-ODMR) spectroscopy in a fiber-top sensor configuration. In a gradiometer, where two sensors are placed on both sides of the busbar, the noise floor is 17 nT/Hz<sup>0.5</sup> in the frequency range of 10–40 Hz without magnetic shielding. The Allan deviation of the magnetic field noise in the laboratory is below 0.3 µT, which corresponds to a busbar current of 10 mA, in the accumulation time range of 10 ms to 100 s.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400400","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A platform for heteroepitaxial (111) chemical vapor deposition (CVD) diamond quantum sensors with preferentially aligned nitrogen vacancy (NV) centers on a large substrate is developed, and its operation as an electric vehicle (EV) battery monitor is demonstrated. A self-standing heteroepitaxial CVD diamond film with a (111) orientation and a thickness of 150 µm is grown on a non-diamond substrate and subsequently separated from it. The high uniformity and crystallinity of the (111)-oriented diamond is confirmed. A 150-µm thick NV-diamond layer is then deposited on the heteroepitaxial diamond. The T2 value measured by confocal microscopy is 20 µs, which corresponds to substitutional nitrogen defect concentration of 8 ppm. The nitrogen-vacancy concentration and T2* are estimated to be 0.05 ppm and 0.05 µs by continuous wave optically detected magnetic resonance (CW-ODMR) spectroscopy in a fiber-top sensor configuration. In a gradiometer, where two sensors are placed on both sides of the busbar, the noise floor is 17 nT/Hz0.5 in the frequency range of 10–40 Hz without magnetic shielding. The Allan deviation of the magnetic field noise in the laboratory is below 0.3 µT, which corresponds to a busbar current of 10 mA, in the accumulation time range of 10 ms to 100 s.

Abstract Image

具有优先排列氮空位中心的异质外延(111)金刚石量子传感器用于电动汽车电池监视器
开发了一种具有优先排列氮空位(NV)中心的异质外延(111)化学气相沉积(CVD)金刚石量子传感器平台,并演示了其作为电动汽车(EV)电池监测仪的工作原理。在非金刚石衬底上生长了一种(111)取向、厚度为150µm的自立异质外延CVD金刚石薄膜,并将其分离。证实了(111)取向金刚石的高均匀性和结晶度。然后在异质外延金刚石上沉积了一层150µm厚的nv -金刚石层。共聚焦显微镜测得的T2值为20µs,对应于取代态氮缺陷浓度为8 ppm。通过光纤顶部传感器配置的连续波光探测磁共振(CW-ODMR)光谱,估计氮空位浓度和T2*分别为0.05 ppm和0.05µs。在梯度计中,在母线两侧放置两个传感器,在10-40 Hz的频率范围内,无磁屏蔽的本底噪声为17 nT/Hz0.5。实验室磁场噪声的Allan偏差小于0.3µT,对应母线电流为10ma,积累时间为10ms ~ 100s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信