具有优先排列氮空位中心的异质外延(111)金刚石量子传感器用于电动汽车电池监视器

IF 4.4 Q1 OPTICS
Kenichi Kajiyama, Moriyoshi Haruyama, Yuji Hatano, Hiromitsu Kato, Masahiko Ogura, Toshiharu Makino, Hitoshi Noguchi, Takeharu Sekiguchi, Takayuki Iwasaki, Mutsuko Hatano
{"title":"具有优先排列氮空位中心的异质外延(111)金刚石量子传感器用于电动汽车电池监视器","authors":"Kenichi Kajiyama,&nbsp;Moriyoshi Haruyama,&nbsp;Yuji Hatano,&nbsp;Hiromitsu Kato,&nbsp;Masahiko Ogura,&nbsp;Toshiharu Makino,&nbsp;Hitoshi Noguchi,&nbsp;Takeharu Sekiguchi,&nbsp;Takayuki Iwasaki,&nbsp;Mutsuko Hatano","doi":"10.1002/qute.202400400","DOIUrl":null,"url":null,"abstract":"<p>A platform for heteroepitaxial (111) chemical vapor deposition (CVD) diamond quantum sensors with preferentially aligned nitrogen vacancy (NV) centers on a large substrate is developed, and its operation as an electric vehicle (EV) battery monitor is demonstrated. A self-standing heteroepitaxial CVD diamond film with a (111) orientation and a thickness of 150 µm is grown on a non-diamond substrate and subsequently separated from it. The high uniformity and crystallinity of the (111)-oriented diamond is confirmed. A 150-µm thick NV-diamond layer is then deposited on the heteroepitaxial diamond. The <i>T</i><sub>2</sub> value measured by confocal microscopy is 20 µs, which corresponds to substitutional nitrogen defect concentration of 8 ppm. The nitrogen-vacancy concentration and <i>T</i><sub>2</sub><sup>*</sup> are estimated to be 0.05 ppm and 0.05 µs by continuous wave optically detected magnetic resonance (CW-ODMR) spectroscopy in a fiber-top sensor configuration. In a gradiometer, where two sensors are placed on both sides of the busbar, the noise floor is 17 nT/Hz<sup>0.5</sup> in the frequency range of 10–40 Hz without magnetic shielding. The Allan deviation of the magnetic field noise in the laboratory is below 0.3 µT, which corresponds to a busbar current of 10 mA, in the accumulation time range of 10 ms to 100 s.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400400","citationCount":"0","resultStr":"{\"title\":\"Heteroepitaxial (111) Diamond Quantum Sensors with Preferentially Aligned Nitrogen-Vacancy Centers for an Electric Vehicle Battery Monitor\",\"authors\":\"Kenichi Kajiyama,&nbsp;Moriyoshi Haruyama,&nbsp;Yuji Hatano,&nbsp;Hiromitsu Kato,&nbsp;Masahiko Ogura,&nbsp;Toshiharu Makino,&nbsp;Hitoshi Noguchi,&nbsp;Takeharu Sekiguchi,&nbsp;Takayuki Iwasaki,&nbsp;Mutsuko Hatano\",\"doi\":\"10.1002/qute.202400400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A platform for heteroepitaxial (111) chemical vapor deposition (CVD) diamond quantum sensors with preferentially aligned nitrogen vacancy (NV) centers on a large substrate is developed, and its operation as an electric vehicle (EV) battery monitor is demonstrated. A self-standing heteroepitaxial CVD diamond film with a (111) orientation and a thickness of 150 µm is grown on a non-diamond substrate and subsequently separated from it. The high uniformity and crystallinity of the (111)-oriented diamond is confirmed. A 150-µm thick NV-diamond layer is then deposited on the heteroepitaxial diamond. The <i>T</i><sub>2</sub> value measured by confocal microscopy is 20 µs, which corresponds to substitutional nitrogen defect concentration of 8 ppm. The nitrogen-vacancy concentration and <i>T</i><sub>2</sub><sup>*</sup> are estimated to be 0.05 ppm and 0.05 µs by continuous wave optically detected magnetic resonance (CW-ODMR) spectroscopy in a fiber-top sensor configuration. In a gradiometer, where two sensors are placed on both sides of the busbar, the noise floor is 17 nT/Hz<sup>0.5</sup> in the frequency range of 10–40 Hz without magnetic shielding. The Allan deviation of the magnetic field noise in the laboratory is below 0.3 µT, which corresponds to a busbar current of 10 mA, in the accumulation time range of 10 ms to 100 s.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400400\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种具有优先排列氮空位(NV)中心的异质外延(111)化学气相沉积(CVD)金刚石量子传感器平台,并演示了其作为电动汽车(EV)电池监测仪的工作原理。在非金刚石衬底上生长了一种(111)取向、厚度为150µm的自立异质外延CVD金刚石薄膜,并将其分离。证实了(111)取向金刚石的高均匀性和结晶度。然后在异质外延金刚石上沉积了一层150µm厚的nv -金刚石层。共聚焦显微镜测得的T2值为20µs,对应于取代态氮缺陷浓度为8 ppm。通过光纤顶部传感器配置的连续波光探测磁共振(CW-ODMR)光谱,估计氮空位浓度和T2*分别为0.05 ppm和0.05µs。在梯度计中,在母线两侧放置两个传感器,在10-40 Hz的频率范围内,无磁屏蔽的本底噪声为17 nT/Hz0.5。实验室磁场噪声的Allan偏差小于0.3µT,对应母线电流为10ma,积累时间为10ms ~ 100s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heteroepitaxial (111) Diamond Quantum Sensors with Preferentially Aligned Nitrogen-Vacancy Centers for an Electric Vehicle Battery Monitor

Heteroepitaxial (111) Diamond Quantum Sensors with Preferentially Aligned Nitrogen-Vacancy Centers for an Electric Vehicle Battery Monitor

A platform for heteroepitaxial (111) chemical vapor deposition (CVD) diamond quantum sensors with preferentially aligned nitrogen vacancy (NV) centers on a large substrate is developed, and its operation as an electric vehicle (EV) battery monitor is demonstrated. A self-standing heteroepitaxial CVD diamond film with a (111) orientation and a thickness of 150 µm is grown on a non-diamond substrate and subsequently separated from it. The high uniformity and crystallinity of the (111)-oriented diamond is confirmed. A 150-µm thick NV-diamond layer is then deposited on the heteroepitaxial diamond. The T2 value measured by confocal microscopy is 20 µs, which corresponds to substitutional nitrogen defect concentration of 8 ppm. The nitrogen-vacancy concentration and T2* are estimated to be 0.05 ppm and 0.05 µs by continuous wave optically detected magnetic resonance (CW-ODMR) spectroscopy in a fiber-top sensor configuration. In a gradiometer, where two sensors are placed on both sides of the busbar, the noise floor is 17 nT/Hz0.5 in the frequency range of 10–40 Hz without magnetic shielding. The Allan deviation of the magnetic field noise in the laboratory is below 0.3 µT, which corresponds to a busbar current of 10 mA, in the accumulation time range of 10 ms to 100 s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信