Advanced quantum technologies最新文献

筛选
英文 中文
Kerr-Effect-Based High-Dimensional Entanglement Generation for Qudit Systems
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202500010
Ming Ma, Qiang Zhu, Fang-Fang Du
{"title":"Kerr-Effect-Based High-Dimensional Entanglement Generation for Qudit Systems","authors":"Ming Ma,&nbsp;Qiang Zhu,&nbsp;Fang-Fang Du","doi":"10.1002/qute.202500010","DOIUrl":"https://doi.org/10.1002/qute.202500010","url":null,"abstract":"<p>Employing high-dimensional photonic encodings (qudits) instead of the traditional 2D encodings (qubits) can significantly enhance loss tolerance and reduce computational resources in photon-based quantum information technology (QIT). To tap into this potential, effective schemes for the high-dimensional generation of entangled states are essential. In this study, two arbitrary 4D entanglement generation protocols based on cross-Kerr effect are developed, including two-qudit entangled states with two photon pairs and three-qudit entangled states with three photon pairs. These 4D entangled states require neither auxiliary photons (or entangled states) nor complicated quantum circuits. The success probabilities of high-dimensional entangled states are close to 1 and their fidelities are robust against the photon loss with the current technology. The 4D entangled states depend on only simple linear-optics elements, available four-dimensional single-qudit operations, and mature measurement methods, making our proposed protocols feasible and efficient in practical QIT.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Quantum Technol. 4/2025) 发行资料(量子科技4/2025号公告)
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202570009
{"title":"Issue Information (Adv. Quantum Technol. 4/2025)","authors":"","doi":"10.1002/qute.202570009","DOIUrl":"https://doi.org/10.1002/qute.202570009","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 4","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202570009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding Mode Control-Like Accelerated Coherent Ising Machine
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202500057
Zhi-guo Nie, Ruo-xing Guo, Chen-rui Fan, Xing-yu Wu, Bo Lu, Cong Cao, Yong-pan Gao
{"title":"Sliding Mode Control-Like Accelerated Coherent Ising Machine","authors":"Zhi-guo Nie,&nbsp;Ruo-xing Guo,&nbsp;Chen-rui Fan,&nbsp;Xing-yu Wu,&nbsp;Bo Lu,&nbsp;Cong Cao,&nbsp;Yong-pan Gao","doi":"10.1002/qute.202500057","DOIUrl":"https://doi.org/10.1002/qute.202500057","url":null,"abstract":"<p>Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Field Sensitivity Optimization of Negatively Charged Boron Vacancy Defects in hBN (Adv. Quantum Technol. 4/2025) hBN中负电荷硼空位缺陷的磁场灵敏度优化(Adv. Quantum technology . 4/2025)
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202570008
Benjamin Whitefield, Milos Toth, Igor Aharonovich, Jean-Philippe Tetienne, Mehran Kianinia
{"title":"Magnetic Field Sensitivity Optimization of Negatively Charged Boron Vacancy Defects in hBN (Adv. Quantum Technol. 4/2025)","authors":"Benjamin Whitefield,&nbsp;Milos Toth,&nbsp;Igor Aharonovich,&nbsp;Jean-Philippe Tetienne,&nbsp;Mehran Kianinia","doi":"10.1002/qute.202570008","DOIUrl":"https://doi.org/10.1002/qute.202570008","url":null,"abstract":"<p>The image depicts the optical excitation of negatively charged boron vacancies in a hexagonal boron nitride lattice. The lattice is positioned on top of a gold stripe which applies a radio frequency used for optically detected magnetic resonance. The magnet placed on the lattice represents the capability of precise magnetic field sensing available with this spin control technique. More in article number 2300118, Igor Aharonovich and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 4","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202570008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Sensing 量子遥感
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202500120
Tongcang Li, Ren-bao Liu, Chong Zu
{"title":"Quantum Sensing","authors":"Tongcang Li,&nbsp;Ren-bao Liu,&nbsp;Chong Zu","doi":"10.1002/qute.202500120","DOIUrl":"https://doi.org/10.1002/qute.202500120","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 4","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonreciprocal Entanglement in Spinning Cavity Magnomechanical System with Coherent Feedback Loop
IF 4.4
Advanced quantum technologies Pub Date : 2025-04-08 DOI: 10.1002/qute.202500063
Cheng-Zhi Gao, Guo-Qing Liu, Nan Wang, Lin Yu, Ai-Dong Zhu
{"title":"Nonreciprocal Entanglement in Spinning Cavity Magnomechanical System with Coherent Feedback Loop","authors":"Cheng-Zhi Gao,&nbsp;Guo-Qing Liu,&nbsp;Nan Wang,&nbsp;Lin Yu,&nbsp;Ai-Dong Zhu","doi":"10.1002/qute.202500063","DOIUrl":"https://doi.org/10.1002/qute.202500063","url":null,"abstract":"<p>A scheme is proposed for generating and enhancing stable nonreciprocal entanglement in a spinning cavity magnomechanical system. The key components of this scheme include a ferromagnetic yttrium iron garnet sphere and a whispering gallery mode resonator supporting two counter-propagating modes. To further optimize the performance of the system, a coherent feedback loop is introduced to reinject the dissipated energy back into the system. This not only provides an additional coupling path for the system but also effectively avoids introducing additional noise caused by measurement. The design significantly enhances both bipartite entanglement and genuine tripartite entanglement. Meanwhile, by spinning the resonator, the cavity modes experience Fizeau drag due to the optical Sagnac effect, thereby achieving nonreciprocal entanglement, which is crucial for applications such as unidirectional quantum communication channels. Additionally, the research demonstrates that even in the presence of backscattering, the entangled state can still recover significantly, highlighting the robustness of entanglement under photon backscattering. This work provides an effective method to enhance and protect quantum resources and holds important application potential for applications in quantum information processing based on magnonics.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing Robust Quantum Neural Networks via Optimized Circuit Metrics 基于优化电路指标的鲁棒量子神经网络设计
IF 4.4
Advanced quantum technologies Pub Date : 2025-03-17 DOI: 10.1002/qute.202400601
Walid El Maouaki, Alberto Marchisio, Taoufik Said, Muhammad Shafique, Mohamed Bennai
{"title":"Designing Robust Quantum Neural Networks via Optimized Circuit Metrics","authors":"Walid El Maouaki,&nbsp;Alberto Marchisio,&nbsp;Taoufik Said,&nbsp;Muhammad Shafique,&nbsp;Mohamed Bennai","doi":"10.1002/qute.202400601","DOIUrl":"https://doi.org/10.1002/qute.202400601","url":null,"abstract":"<p>In this study, the robustness of Quanvolutional Neural Networks (QuNNs) is investigated in comparison to their classical counterparts, Convolutional Neural Networks (CNNs), against two adversarial attacks: the Fast Gradient Sign Method (FGSM) and the Projected Gradient Descent (PGD), for the image classification task on both the Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST (FMNIST) datasets. To enhance the robustness of QuNNs, a novel methodology is developed that utilizes three quantum circuit metrics: expressibility, entanglement capability, and controlled rotation gate selection. This analysis shows that these metrics significantly influence data representation within the Hilbert space, thereby directly affecting QuNN robustness. It is rigorously established that circuits with higher expressibility and lower entanglement capability generally exhibit enhanced robustness under adversarial conditions, particularly at low-spectrum perturbation strengths where most attacks occur. Furthermore, these findings challenge the prevailing assumption that expressibility alone dictates circuit robustness; instead, it is demonstrated that the inclusion of controlled rotation gates around the Z-axis generally enhances the resilience of QuNNs. These results demonstrate that QuNNs exhibit up to 60% greater robustness on the MNIST dataset and 40% on the Fashion-MNIST dataset compared to CNNs. Collectively, this work elucidates the relationship between quantum circuit metrics and robust data feature extraction, advancing the field by improving the adversarial robustness of QuNNs.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PT $mathcal {PT}$ -Symmetric Quantum Rabi Model: Solutions and Exceptional Points PT $mathcal {PT}$ -对称量子Rabi模型:解和例外点
IF 4.4
Advanced quantum technologies Pub Date : 2025-03-17 DOI: 10.1002/qute.202400609
Jiong Li, Yi-Cheng Wang, Li-Wei Duan, Qing-Hu Chen
{"title":"PT\u0000 $mathcal {PT}$\u0000 -Symmetric Quantum Rabi Model: Solutions and Exceptional Points","authors":"Jiong Li,&nbsp;Yi-Cheng Wang,&nbsp;Li-Wei Duan,&nbsp;Qing-Hu Chen","doi":"10.1002/qute.202400609","DOIUrl":"https://doi.org/10.1002/qute.202400609","url":null,"abstract":"<p>The <span></span><math>\u0000 <semantics>\u0000 <mi>PT</mi>\u0000 <annotation>$mathcal {PT}$</annotation>\u0000 </semantics></math>-symmetric non-Hermitian quantum Rabi model (QRM) with imaginary coupling is solved using the Bogoliubov operators approach. A transcendental function responsible for the exact solutions is derived, with its zeros yielding the regular spectrum. Two types of intersections: the exceptional points (EPs), which are well-studied in the non-Hermitian system; and another arising from doubly degenerate states due to the conserved QRM parity, which is well-known in the Hermitian QRM, are found. These intersections are identified through this transcendental function. EPs emerge between pairs of adjacent excited energy levels, shifting toward lower coupling strengths as energy levels increase, and can also be predicted by a generalized rotating-wave approximation approach. The fidelity susceptibility diverges to negative infinity at the EPs, consistent with recent findings in non-Hermitian systems, while it diverges to positive infinity at the doubly degenerate points. The EPs are further confirmed by the vanishing c-product in the biorthogonal basis.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 6","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Effect and Compensation of Polarization-Dependent Loss in Free-Space Reference Frame Independent Quantum Key Distribution (Adv. Quantum Technol. 3/2025) 封面:自由空间参照系独立量子密钥分配中极化相关损耗的影响与补偿(ad . Quantum technology . 3/2025)
IF 4.4
Advanced quantum technologies Pub Date : 2025-03-12 DOI: 10.1002/qute.202570006
Kyongchun Lim, Byung-Seok Choi, Ju Hee Baek, Minchul Kim, Joong-Seon Choe, Kap-Joong Kim, Dong Churl Kim, Junsang Oh, Chun Ju Youn
{"title":"Front Cover: Effect and Compensation of Polarization-Dependent Loss in Free-Space Reference Frame Independent Quantum Key Distribution (Adv. Quantum Technol. 3/2025)","authors":"Kyongchun Lim,&nbsp;Byung-Seok Choi,&nbsp;Ju Hee Baek,&nbsp;Minchul Kim,&nbsp;Joong-Seon Choe,&nbsp;Kap-Joong Kim,&nbsp;Dong Churl Kim,&nbsp;Junsang Oh,&nbsp;Chun Ju Youn","doi":"10.1002/qute.202570006","DOIUrl":"https://doi.org/10.1002/qute.202570006","url":null,"abstract":"<p>In article number 2400492, Kyongchun Lim, Chun Ju Youn, and co-workers investigate the effect of polarization-dependent loss (PDL) on free-space quantum key distribution (QKD) and proposes a fundamental compensation method that optically corrects PDL without relying on post-selection techniques. Experimental results demonstrate that the proposed method effectively mitigates PDL, improving polarization state integrity and significantly enhancing QKD performance, contributing to more robust and secure quantum key distribution systems.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202570006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Quantum Technol. 3/2025) 发行资料(Adv. Quantum technology . 3/2025)
IF 4.4
Advanced quantum technologies Pub Date : 2025-03-12 DOI: 10.1002/qute.202570007
{"title":"Issue Information (Adv. Quantum Technol. 3/2025)","authors":"","doi":"10.1002/qute.202570007","DOIUrl":"https://doi.org/10.1002/qute.202570007","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202570007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信