Sliding Mode Control-Like Accelerated Coherent Ising Machine

IF 4.4 Q1 OPTICS
Zhi-guo Nie, Ruo-xing Guo, Chen-rui Fan, Xing-yu Wu, Bo Lu, Cong Cao, Yong-pan Gao
{"title":"Sliding Mode Control-Like Accelerated Coherent Ising Machine","authors":"Zhi-guo Nie,&nbsp;Ruo-xing Guo,&nbsp;Chen-rui Fan,&nbsp;Xing-yu Wu,&nbsp;Bo Lu,&nbsp;Cong Cao,&nbsp;Yong-pan Gao","doi":"10.1002/qute.202500057","DOIUrl":null,"url":null,"abstract":"<p>Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202500057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.

滑模控制型加速相干成像机
相干伊辛机(CIM)通过将大规模组合优化问题映射到伊辛模型的基态搜索,成为解决大规模组合优化问题的有力工具。传统的CIM模型在处理大规模问题时面临两个主要挑战:收敛速度慢和对局部极小值的敏感性。为了解决这些限制,受经典动态控制方法的启发,SMCL-CIM将滑模控制原理集成到CIM的反馈机制中。在随机图和g集基准测试上的实验结果表明,SMCL-CIM在最大切割问题上达到了约79。在相同的模拟条件下,溶液时间缩短93%,溶液精度提高11.4% ~ 15.3%。该方案为组合优化提供了一种高效、可扩展的方法,从而促进了CIM的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信