滑模控制型加速相干成像机

IF 4.4 Q1 OPTICS
Zhi-guo Nie, Ruo-xing Guo, Chen-rui Fan, Xing-yu Wu, Bo Lu, Cong Cao, Yong-pan Gao
{"title":"滑模控制型加速相干成像机","authors":"Zhi-guo Nie,&nbsp;Ruo-xing Guo,&nbsp;Chen-rui Fan,&nbsp;Xing-yu Wu,&nbsp;Bo Lu,&nbsp;Cong Cao,&nbsp;Yong-pan Gao","doi":"10.1002/qute.202500057","DOIUrl":null,"url":null,"abstract":"<p>Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding Mode Control-Like Accelerated Coherent Ising Machine\",\"authors\":\"Zhi-guo Nie,&nbsp;Ruo-xing Guo,&nbsp;Chen-rui Fan,&nbsp;Xing-yu Wu,&nbsp;Bo Lu,&nbsp;Cong Cao,&nbsp;Yong-pan Gao\",\"doi\":\"10.1002/qute.202500057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202500057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202500057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

相干伊辛机(CIM)通过将大规模组合优化问题映射到伊辛模型的基态搜索,成为解决大规模组合优化问题的有力工具。传统的CIM模型在处理大规模问题时面临两个主要挑战:收敛速度慢和对局部极小值的敏感性。为了解决这些限制,受经典动态控制方法的启发,SMCL-CIM将滑模控制原理集成到CIM的反馈机制中。在随机图和g集基准测试上的实验结果表明,SMCL-CIM在最大切割问题上达到了约79。在相同的模拟条件下,溶液时间缩短93%,溶液精度提高11.4% ~ 15.3%。该方案为组合优化提供了一种高效、可扩展的方法,从而促进了CIM的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding Mode Control-Like Accelerated Coherent Ising Machine

Coherent Ising Machine (CIM) emerge as powerful tools for solving large-scale combinatorial optimization problems by mapping them to the ground state search of the Ising model. Traditional CIM models face two major challenges when addressing large-scale problems: slowness in convergence and susceptibility to local minima. To address these limitations, the Sliding Mode Control-Like Coherent Ising Machine (SMCL-CIM) integrates sliding mode control principles into the feedback mechanism of the CIM, inspired by classical dynamic control methods. Experimental results on random graphs and G-set benchmarks demonstrate that for the max-cut problem, SMCL-CIM achieves an approximately 79. 93% reduction in solution time while improving solution accuracy by 11.4%–15.3% under the same simulation conditions. This scheme provides an efficient and scalable approach to combinatorial optimization, thereby facilitating the broader application of CIM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信