Quantum-Enhanced Computing for the Antiferromagnetic J 1 − J 2 $J_1-J_2$ Heisenberg Model

IF 4.3 Q1 OPTICS
Yuheng Guo, Feixiang Guo, Bozitao Zhong, Xingyu Chen, Xijun Yuan, Xian-Min Jin, Hao Tang
{"title":"Quantum-Enhanced Computing for the Antiferromagnetic \n \n \n \n J\n 1\n \n −\n \n J\n 2\n \n \n $J_1-J_2$\n Heisenberg Model","authors":"Yuheng Guo,&nbsp;Feixiang Guo,&nbsp;Bozitao Zhong,&nbsp;Xingyu Chen,&nbsp;Xijun Yuan,&nbsp;Xian-Min Jin,&nbsp;Hao Tang","doi":"10.1002/qute.202300240","DOIUrl":null,"url":null,"abstract":"<p>The variational quantum eigensolver (VQE) has recently been demonstrated for solving the challenging Heisenberg Antiferromagnet (HAFM) models. Apart from the ground state energy, many important issues such as excited states and general frustration for HAFM are worth investigating, which have only been partially solved by classical methods and rarely by quantum approaches. Here, VQE is applied to the GPU quantum simulator to calculate the excited states of a <span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>1</mn>\n </msub>\n <annotation>$J_1$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n <annotation>$J_2$</annotation>\n </semantics></math> HAFM model on both square and kagome lattices. The invariant subspace property is analyzed during the process of VQE and hence the even-fold degeneracy is explained that is difficult to interpret using classical methods. Moreover, the VQE results for different <span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n <annotation>$J_2$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>1</mn>\n </msub>\n <annotation>$J_1$</annotation>\n </semantics></math> ratios show a more efficient way to observe the phase transition in this model. The advantageous properties of VQE are demonstrated for exploring fundamental physical mechanisms.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202300240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The variational quantum eigensolver (VQE) has recently been demonstrated for solving the challenging Heisenberg Antiferromagnet (HAFM) models. Apart from the ground state energy, many important issues such as excited states and general frustration for HAFM are worth investigating, which have only been partially solved by classical methods and rarely by quantum approaches. Here, VQE is applied to the GPU quantum simulator to calculate the excited states of a J 1 $J_1$ - J 2 $J_2$ HAFM model on both square and kagome lattices. The invariant subspace property is analyzed during the process of VQE and hence the even-fold degeneracy is explained that is difficult to interpret using classical methods. Moreover, the VQE results for different J 2 $J_2$ / J 1 $J_1$ ratios show a more efficient way to observe the phase transition in this model. The advantageous properties of VQE are demonstrated for exploring fundamental physical mechanisms.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

反铁磁j1−j2 $J_1-J_2$ Heisenberg模型的量子增强计算
变分量子本征求解器(VQE)最近被证明用于求解具有挑战性的海森堡反铁磁体(HAFM)模型。除了基态能量之外,许多重要的问题,如激发态和HAFM的一般挫折,都值得研究,这些问题仅用经典方法部分解决,很少用量子方法解决。本文将VQE应用于GPU量子模拟器,计算了j1 $J_1$ - j2 $J_2$ HAFM模型在正方形和kagome晶格上的激发态。分析了VQE过程中的不变子空间性质,从而解释了经典方法难以解释的偶重简并性。此外,不同j2 $J_2$ / j1 $J_1$比值下的VQE结果显示了该模型中更有效的相变观测方法。证明了VQE在探索基本物理机制方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信