{"title":"Strain modified nano-scale Ge/Ge0.98Sn0.02 exotic pin photo-sensor array for IR sensing: theoretical reliability and experimental feasibility studies","authors":"Bias Bhadra, Suchismita Chinara, Abhijit Kundu","doi":"10.1007/s11082-024-07110-2","DOIUrl":"10.1007/s11082-024-07110-2","url":null,"abstract":"<div><p>In this paper, the superiority of Ge/Ge<sub>0.98</sub>Sn<sub>0.02</sub>asymmetrical supper lattice structure based vertically doped nano-scale pin photo-sensor under operating wavelength of 1200 nm to 2200 nm is reported. The authors have developed non-linear <b>S</b>train <b>M</b>odified <b>Q</b>uantum-<b>C</b>orrected <b>D</b>rift–<b>D</b>iffusion (<b>SMQCDD</b>) model for analyzing the electrical and optical characteristics of the photo-sensor. The inclusion of a small amount of Sn (2%) into the pure Ge material creates in-plane bi-axial strain in the intrinsic region (i-region) of the device. This results in increases in the value of the out-plane mobility of the charge particles. As a result, the overall performance of the photo-sensor enhances significantly. The authors have used in-plane induced bi-axial strain to accelerate the out-plane mobility of the charge particles by incorporation of the exotic asymmetrical supper lattice structure in the i-region of the photo-sensor. The validation of the non-linear SMQCDD model is performed through comparison of the simulated data obtained from SMQCDD model with the experimental results under a-like thermal/structural/electrical conditions. Additionally, the authors have designed 3X2 array of photo-sensors and studied the photo-electrical characteristics at the said operating wavelength. The proposed device offers better performance in terms of quantum efficiency (0.619: single-type photo-sensor; 0.708: array-type photo) and photo-responsivity (0.056 A/W: single-type photo-sensor; 0.808 A/W:for array-type photo-sensor)at 1600 nm wavelength compared to its conventional flat Si counterpart. The developed exotic pin photo-sensor can be used as a sensing device for applications in optical communication and bio-medical systems. As far as the authors are aware, this is the first report on nano-scale Ge/Ge<sub>0.98</sub>Sn<sub>0.02</sub>exotic pin photo-sensor.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Balamurugan, C. Annadurai, I. Nelson, K. Nirmala Devi, A. Sheryl Oliver, S. Gomathi
{"title":"Retraction Note: Optical bio sensor based cancer cell detection using optimized machine learning model with quantum computing","authors":"G. Balamurugan, C. Annadurai, I. Nelson, K. Nirmala Devi, A. Sheryl Oliver, S. Gomathi","doi":"10.1007/s11082-024-07910-6","DOIUrl":"10.1007/s11082-024-07910-6","url":null,"abstract":"","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eida S. Al-Farraj, Mohammed M. El-Gamil, Kareem A. Asla
{"title":"Retraction Note: Novel thiazole carbamothioyl benzamide derivative Mn(II), Ni(II), and Cu(II) complexes: synthesis, structural characterisation, computational, and biological potency","authors":"Eida S. Al-Farraj, Mohammed M. El-Gamil, Kareem A. Asla","doi":"10.1007/s11082-024-07890-7","DOIUrl":"10.1007/s11082-024-07890-7","url":null,"abstract":"","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Note: Software defined network communication systems and detection of optic device anamoly based on multi-layer architectures","authors":"XueMing Lv","doi":"10.1007/s11082-024-07898-z","DOIUrl":"10.1007/s11082-024-07898-z","url":null,"abstract":"","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Note: A hybrid QL ANN model designed to improve the Quality of Transmission of optical communication network","authors":"Abdulkarem H. M. Almawgani","doi":"10.1007/s11082-024-07887-2","DOIUrl":"10.1007/s11082-024-07887-2","url":null,"abstract":"","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Dheenathayalan, Sheetal Bukkawar, Ette Hari Krishna, Shrikant Tiwari
{"title":"Optimized TDMA framework for channel interference mitigation in IWSN based on self-adaptive affinity propagation clustering","authors":"S. Dheenathayalan, Sheetal Bukkawar, Ette Hari Krishna, Shrikant Tiwari","doi":"10.1007/s11082-024-07737-1","DOIUrl":"10.1007/s11082-024-07737-1","url":null,"abstract":"<div><p>Industrial Wireless Sensor Networks (IWSN) is the cornerstone of the factories of the future. The massive volumes of heterogeneous data generated from large-scale IWSNs still pose challenges to the establishment of predictable, deterministic, and real-time transmission scheduling. One of the major obstacles in wireless sensor networks (IWSNs) is the reduction of collisions caused by adjacent nodes transmitting simultaneously over a single channel. The Optimized TDMA Framework for Optimized Channel Interference Mitigation Algorithm (OCIMA) has been developed in order to prevent transmission collisions. Specifically, the suggested TDMA approach significantly reduces the collision during the data transmission, while simultaneously minimizing the high priority packets transport latency. The nodes are first positioned throughout the experimental area at random. Using the Self-Adaptive Affinity Propagation Clustering (SAAPC) Algorithm, the deployed nodes are clustered to form clusters, with a cluster head selected. Self-adaptive affinity propagation consists of the initial phase, setup phase, and communication phase. After clustering, channel interference can be avoided using the TDMA approach combined with the Gazelle Optimization Algorithm (GOA). To prevent data collisions, each network cluster is given time slots via the TDMA mechanism. The optimal practicable performance of TDMA can be attained by choosing a sufficient amount of time slots for the complete data transfer. For that, GOA optimization is developed to choosing the optimal timeslots. According to the simulation analysis, the OCIMA technique that was created which have 12.4 J residual energy, 94% packet delivery ratio, and 986 s network lifetime. Thus, the proposed approach is the better choice for avoiding the mitigation of TDMA during data transmission.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear interface separating the Kerr nonlinear and the exponential graded-index media","authors":"S. E. Savotchenko","doi":"10.1007/s11082-024-07815-4","DOIUrl":"10.1007/s11082-024-07815-4","url":null,"abstract":"<div><p>The influence of the nonlinear response of the interface on the localized state formation near at the boundary between medium with Kerr nonlinearity an exponential graded-index medium is analyzed. The linear and nonlinear responses of the interface are taken into account. The cases of self-focusing and defocusing nonlinearities of the Kerr medium are considered. Exact analytical solutions describing the asymmetrical spatial profiles of localized states and analytical solutions to dispersion equation in different cases are found. The intensity at the interface reduces in the case a defocusing nonlinear response of the interface and it enlarges in the case a self-focusing nonlinear response of the interface with an increase in the localization energy. The spatial distribution of localized states with two asymmetrical maxima can arise with a relatively small value of the characteristic width of an exponential graded-index medium corresponding to the ground state characterized by no more than one maximum in the graded-index medium. The appearance of the second maximum is possible in the case of contact only between a self-focusing medium and the graded-index medium and is due solely to the presence of a nonlinear response of the interface. The localized states with the spatial profiles attenuating with oscillations in the graded-index medium are found with a significant increase in the characteristic width of a graded-index medium.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Note: Music photonic signal analysis based health monitoring system using classification by quantum machine learning techniques","authors":"Dingjie Hou","doi":"10.1007/s11082-024-07913-3","DOIUrl":"10.1007/s11082-024-07913-3","url":null,"abstract":"","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shivratan Saini, Vimala Dhayal, N. S. Leel, Ravina, A. M. Quraishi, S. Z. Hashmi, Saurabh Dalela, B. L. Choudhary, P. A. Alvi
{"title":"Reinforcing the characteristics of recyclable PVA/PVDF polymer blends via ZnO nanofiller","authors":"Shivratan Saini, Vimala Dhayal, N. S. Leel, Ravina, A. M. Quraishi, S. Z. Hashmi, Saurabh Dalela, B. L. Choudhary, P. A. Alvi","doi":"10.1007/s11082-024-07816-3","DOIUrl":"10.1007/s11082-024-07816-3","url":null,"abstract":"<div><p>This article explores the reinforcement of the chief characteristics of the polymer blends made of polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) via incorporation of ZnO (zinc oxide) nanofiller. The resulting PVA/PVDF/ZnO polymer nanocomposites were fabricated by the solution casting approach and characterized by key techniques such as XRD, FESEM, UV-Vis-NIR photo-spectrometer, impedance analyzer and FTIR spectrometer to examine the enhancement in structural parameters, surface morphology, optical and electrical parameters, and mechanism of functional groups. respectively. By optimizing and enhancing the wt% of ZnO nanoparticles, the resulting nanocomposites demonstrate improved structural (increase in crystalline size from 63 nm to 70 nm, reduction in dislocation density from 9.61 × 10<sup>− 5</sup> to 6.49 × 10<sup>− 5</sup> m<sup>− 2</sup>) and optical parameters (reduction in optical bandgap from 5.02 eV to 4.44 eV, increase in refractive index and Urbach energy from 1.98 to 2.10 and 1.5 to 4.0 eV, respectively); and dielectric performance (augmentation in dielectric constant and ac conductivity from ~ 12 to 60 and 0.003 to 0.009 S/mm, respectively) making them appropriate for a broad range of industrial applications. In FTIR spectra, the transmittance peaks at 880 cm⁻¹ and 833 cm⁻¹ indicate the -C-C-C chain characteristic of PVDF, while peaks at 1402 cm⁻¹ and 2920 cm⁻¹ correspond to -CH₂ groups in both PVA and PVDF. Additionally, peaks at 1068 cm⁻¹ and 1704 cm⁻¹ relate to -C-O and -C = O stretching, and the broad peak from 3500 cm⁻¹ to 3800 cm⁻¹ represents hydroxyl groups, with intensity increased by ZnO nanofiller. The uniform dispersion of ZnO within the PVA/PVDF polymer blends plays a key role in reinforcing the interfacial bonding between the polymers, leading to superior structural integrity and enhanced recyclability. This approach offers a sustainable pathway for the progress of high-performance polymeric nanocomposites with potential applications in electronics.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of indium molar content in AlxInyGa(1-x–y)N/AlaGabN orderly quantized integrated quantum barrier for highly efficient droop free UV-C LEDs","authors":"Indrani Mazumder, Kashish Sapra, Ashok Chauhan, Manish Mathew, Kuldip Singh","doi":"10.1007/s11082-024-07609-8","DOIUrl":"10.1007/s11082-024-07609-8","url":null,"abstract":"<div><p>This article proposes a new Ultra-Violet (UV)-C Light emitting Diode (LED) structure based on orderly aligned Quaternary Nitride alloy based specially-designed quantized quantum barrier. In this article, we theoretically investigate the performance such as internal quantum efficiency (IQE), efficiency droop etc. of proposed structure and also compare it with the reference UV-C LED structure. In this proposed structure, there is no sudden potential barrier as in case of reference structure because of the strain compensation provided by the quantized periodic Superlattice-Al<sub>x</sub>In<sub>y</sub>Ga<sub>(1-x–y)</sub>N/ Al<sub>a</sub>Ga<sub>b</sub>N quantum barrier. Active region epilayer crystal orientation balanced by introducing ‘In' molar content in alternate sub-layers of quantum barrier (QB). This allows for stronger carrier confinement in the active region, which enhances IQE to 72% from 32% (reference structure) and reduction in efficiency droop from 11% to 0.05% at current density of 200 A-cm<sup>−2</sup>. The variation in the density of states (DOS) for carrier allocation due to strain balance in the quantum barrier compared to the quantum wells (QW) is responsible for the significant increase in the electro-optical efficiency of the light emitting device.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}